

 The Quality Landscape

 No software system is completely and utterly defect - free. The testing and reviewing that you
perform will always highlight defects and deficiencies in your outputs. The level of testing and
reviewing that you actually perform and when you perform it dictate how many defects can be
highlighted and fixed before the system is put into live service or production. The preparation,
execution, and delivery that you perform should really ensure that quality is maintained
throughout the project. The software quality landscape encompasses the categories and measures
for defining and maintaining software quality. The measures are intended to reduce the number of
defects that are found out late in the process and to produce high - quality code and artifacts
throughout the project. There ’ s no doubt that quality has costs associated with it, but the extent to
which it actually costs needs to be understood, controlled, and minimized without compromising
the final result. I mentioned in the previous chapter that I consider quality to be a component of
scope, and the software quality characteristics contain the high - level categories for each of the
quality areas. The total number of defects and their scale should be reduced as much as possible
during construction to avoid unnecessary delays, excessive numbers of defects during formal
testing, and cost overruns. To support these principles, you need to implement and employ tools
and processes that help to maintain quality throughout the project.

 This chapter is organized into the following sections:

 The Quality Characteristics — Provides an overview of the individual quality
characteristics, including correctness and completeness, usability, accessibility, reliability
and stability, performance, efficiency, availability, integrity and security, operability and
supportability, deployability, configurability, maintainability, readability, reusability,
modularity, flexibility and extensibility, and testability.

 Why Quality (and Scope) Matter — Takes a look at a robust construction phase and the
activities performed to get a realistic picture of what ’ s involved in quality construction.
This section also covers how budgets and timescales are affected if the appropriate scope
isn ’ t factored in accordingly. I then look at what potentially lies beyond the construction
phase, including overlapping test phases, the profile of defects during testing, turning
around defects, hot - fixing, technical tuning and re - factoring, and sweeping. I describe

❑

❑

c02.indd 35c02.indd 35 1/20/09 10:42:49 AM1/20/09 10:42:49 AM

Excerpted with permission of Wrox Press from Design - Build - Run

36

Part I: Production-Ready Software

how some of these activities lead to a drop in the quality bar and outline a number of practices
that you can employ to improve and maintain quality and productivity.

 Quality Comes at a Price — Provides an overview of the financial matters involved in quality
construction, and a basis for understanding the financial implications to assist in the decision -
 making process. The section also looks at calculating the potential cost of defects and
performing cost/benefit analyses, and, finally, looks at the implications of realistic estimating to
ensure that the scope, budget, and timescales are set and agreed on.

 In this chapter you ’ ll get an overview of the quality characteristics and some of the activities you can
perform to improve the quality of your software and projects as well as understanding the costs and
benefits associated with them. As the book progresses, I ’ ll cover some of these items in more detail.

 Before diving in, I ’ d like to share a short story with you that is quite poignant at this point. It was a
marvelous day when my editor told me that my proposal for this book had been accepted and that I
should start work immediately. I asked him if the final contract had been sent and he told me that it had
been. However, he said there was an issue — the courier ’ s online tracking system was reporting an
 “ Incorrect Address ” error, although we confirmed that the contract had been addressed correctly. I took
it upon myself to telephone the courier company to follow up with them. I gave the representative (rep)
my tracking number and she replied, “ Okay, I ’ m just waiting for the details to load on my screen. ”
There was a lengthy pause. The rep then said, “ I ’ m sorry about this, but my system is running really
slow today. ” “ No worries, ” I replied. After another lengthy pause, the representative said, “ I ’ m really
sorry. Do you mind if I transfer you to someone else as my computer just froze? ”

 With reference to the preceding short story, I actually wondered whether this sort of thing (the
computers running slowly and freezing up) happened quite often or whether it was simply a one - time
event. If the situation occurs on a regular basis, I can only imagine the frustration of the users and
customers, and how it would erode confidence in the overall quality of the solution. There ’ s nothing
worse than having to use an application or service that you don ’ t have confidence in. The quality
characteristics and, more important, ensuring that the solution actually meets them, will help to instill
confidence in the solution.

 The Quality Characteristics
 The quality characteristics are often born out of a set of guiding principles, which set the scene or vision
for the solution. The guiding principles are a set of high - level statements that outline the intent of the
solution. Typically, there are around ten or so guiding principles for any undertaking, although this
varies greatly depending on what they refer to. Some organizations use guiding principles to set out
what matters to them, their employees, and their customers. Projects generally use guiding principles to
set out key capabilities and characteristics of the solution. If the project is implementing a new version of
an existing application, the guiding principles will often include capabilities that are an improvement
over the previous version. For example, if scalability is limited or non - existent in the existing system, one
guiding principle for the new system may be “ highly scalable. ” The principles do not describe the exact
functionality; instead, they capture a high - level manifesto that underpins the vision and goals for the
future state solution. The following are examples of guiding principles:

❑

c02.indd 36c02.indd 36 1/20/09 10:42:51 AM1/20/09 10:42:51 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

37

 Positive user experience — Positively impact the user experience and satisfaction of the system
while retaining and satisfying the business goals and requirements. Providing a rich and
satisfying user experience is not just good for the customer — it ’ s good for business and the
company. With respect to websites and a global population, however, there are potentially
millions of users, all of whom will have their own point of view on how user friendly the site is.
The designer needs to come up with an easy - to - use interface while providing all the relevant
functionality.

 Flexible — Support for a growing, changing, and adapting marketplace by providing the ability
to add new functionality quickly and easily. The ability to react quickly to changes in the market
and provide new functionality quickly and easily is a factor for success. The solution should be
flexible enough without dramatically impacting costs and timescales when it comes to adding
new functionality.

 High performance — Support for global transaction levels and volumes. With a worldwide
population the site could be accessed by millions of users, so performance is a key principle that
should underpin the design. The end - to - end transaction time is crucial to end users. It ’ s very
frustrating sitting around waiting for pages to refresh, especially when you have no idea of what
is happening in the background.

 Cost effective — Efficient and cost effective to operate, support, maintain and enhance. The
system shouldn ’ t introduce an unnecessary burden on the support organization. The solution
needs to be generally easy to operate. The system needs to be relatively easy to maintain.
Additional features and enhancements will be added over time. During analysis and design a
number of features will be deemed out of scope, all of which could be candidates for a future
release.

 Highly secure — The system may capture personal information about customers. If this
information were to get into the wrong hands, it could not only be newsworthy but it could
seriously affect the customers, the organization ’ s reputation, market share, and bottom - line
figures. The system should implement highly secure protocols for data capture, viewing,
extraction, and amendment. The system will maintain and protect customer and user privacy
and information at all times.

 New technologies — The system should be built and tested using the latest generation of
technologies.

 The guiding principles are usually mapped to a set of business benefits and drivers that can be realized
through the adoption of the solution. For instance, one business driver may be to reduce manual effort
(and costs) by 20 percent. In such a case, automation would feature quite high on the software
implementation agenda.

 The overall solution doesn ’ t just include code. Contrary to popular belief, software developers don ’ t just
develop code. They ’ re responsible for many other tasks, including reviewing documentation, writing
technical designs and other documentation, writing test scripts, testing software, preparing
presentations, and showing results. They implement development processes and practices. They write
code and scripts; develop test data; and design configuration files, components, and applications.
They ’ re also responsible for helping other people, handing over their solution and documentation as
well as doing a whole bunch of other things. Improving the quality of our system means applying the
same due diligence to everything you do and not just focusing on the quality of your code. If you take a
step back and think about what you are doing and why you are doing it, you can not only improve the
quality of your code but everything else around it. Beautifully crafted code can be let down by poor,

❑

❑

❑

❑

❑

❑

c02.indd 37c02.indd 37 1/20/09 10:42:51 AM1/20/09 10:42:51 AM

Excerpted with permission of Wrox Press from Design - Build - Run

38

Part I: Production-Ready Software

inaccurate, or incomplete documentation or tools. In these days of agile, rapid application development
and model - driven engineering techniques, there ’ s still a reasonable proportion of the job that doesn ’ t
involve actual coding. As I mentioned in the previous chapter, the use of wikis can really help to reduce
the amount of “ formal ” documentation that is produced. However, it still needs to be fit for purpose.

 Continuous improvement is about ensuring that everything you do is high quality and displays a
number of different quality characteristics. The following table briefly summarizes the essence of each
quality characteristic. I ’ ve used the term it and not application, software , or system because I believe that
these terms somewhat imply source code or source - related artifacts, and, as you ’ ve seen, production
readiness applies to applications, environments, processes, and tools, which involve more than just
source code — the quality characteristics can apply to everything you produce, although not every
characteristic will apply to a particular deliverable.

 Correctness and completeness Correctness and completeness represent the extent to which it
delivers what it should. Correctness and completeness are
derived from the scope — that is, the requirements and
constraints whether documented or otherwise.

 Usability Usability is the ease of which it can be used. This is not to say
that all things will be easy to use, but “ usability ” refers to the
overall ease of use from a variety of different user groups and
perspectives.

 Accessibility Accessibility is the extent to which it can support a variety of
different users. This doesn ’ t just mean supporting users with
disabilities. It includes a variety of subject areas, including
alternative languages and users in different locations.

 Reliability and stability Reliability and stability represent the ability for it to perform its
functions under normal (and adverse) conditions. This includes
repeatability and predictability, in that it should produce the
same results under the same conditions. This also includes all
failure and recovery and disaster recovery situations.

 Performance (Speed/Users) Performance is the speed at which it performs its functions under
normal and adverse conditions and load. In order to gauge true
performance, the number of users, locations, and transactions
also need to be considered.

The term “ performance” is often used to include other
characteristics; however, I ’ ve chosen to separate the definition as
I ’ ve included the other characteristics individually.

 Efficiency Efficiency is the extent to which it utilizes resources. Resources
include system resources (such as CPU, memory, disk) as well as
human resources and other resources (such as printers, paper,
and the environment).

 Availability Availability is the extent to which it is available and ready for
use. Different users have different expectations of availability that
should be taken into account.

c02.indd 38c02.indd 38 1/20/09 10:42:52 AM1/20/09 10:42:52 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

39

 Scalability The ability to which it can scale to meet future demand or growth
needs.

 Integrity and security Integrity is the extent to which it prevents unauthorized or
improper use or distribution.

 Operability and supportability Operability is the extent to which it can be operated and kept up -
 and - running (functioning and in a healthy state). Supportability
is the extent to which it can be effectively supported.

 Deployability Deployability is the extent to which it can be deployed. There are
typically many users and environments involved in the project,
and deployability is vital to getting the right artifacts out to the
right people and places.

 Configurability and adaptability Configurability is the extent to which it can be configured or
adapted for different scenarios and situations.

 Maintainability Maintainability is the extent to which it can be maintained and
enhanced as the project progresses.

 Readability Readability is the ease of which it can be read or understood.
There are many different users and groups of users, so readability
is often seen from a number of different perspectives.

 Reusability Reusability is the extent to which it can be reused, in whole or in
part, and for other purposes or in other areas.

 Modularity Modularity is the extent to which it is broken up into component
parts or building blocks. Modularity often breeds re - use by
providing smaller artifacts that can be pieced together into a
larger solution.

 Flexibility and extensibility Flexibility and extensibility is the extent to which its usage can be
changed or extended. Unlike maintainability and configurability,
flexibility and extensibility deal with changing its usage and
extending it beyond its original scope.

 Testability Testability is the extent to which it can be tested, proven, and
quantified. If it can ’ t be quantified, it can ’ t be proven to work.
Certain situations call for a pragmatic risk assessment based on
skills and knowledge to avoid lengthy and costly testing that
covers very extreme and unlikely circumstances.

 The degree or extent to which each of these characteristics applies depends entirely on what they are
being applied to. For instance, documentation needs to be correct and complete, readable, and usable, as
well as reusable and maintainable. Documentation may also need to be integral and secure. This could
be as simple as including a security classification on the document. Tools will generally need to be more
configurable and extensible, given the number of potential uses, environments, and situations they will
be used in. Architecture and framework components will generally be more reusable. Processes also
need to be usable, efficient, and scalable to cope with future demand. A process that doesn ’ t scale can

c02.indd 39c02.indd 39 1/20/09 10:42:52 AM1/20/09 10:42:52 AM

Excerpted with permission of Wrox Press from Design - Build - Run

40

Part I: Production-Ready Software

impact a project greatly. For example, assume that you have a single DBA who is responsible for
developing all database artifacts. If there ’ s an influx of database requirements, it ’ s likely that one person
could be overloaded, which can have an impact on timescales. If your project team is distributed across
multiple locations, the applications, environments, processes, and tools would also need to
accommodate this.

 It would take a very large table to list all the individual items that we use and produce, along with their
associated quality characteristics. It ’ s worth thinking about each of these characteristics and how they
could apply to what you ’ re producing or implementing.

 There are many quality characteristics, and a search on the Internet would return many results on the
subject. I ’ ve included the preceding characteristics because they cover the entire system and they ’ re the
primary characteristics I ’ ll focus on within this book.

 Why Quality (and Scope) Matter
 Studies have shown that the cost of fixing bugs later in the lifecycle is generally higher than finding and
fixing them earlier on. In the previous chapter, you saw that projects can fail or be seen to be a failure
because of poor quality and poor scope.

 I ’ m a firm believer that no system is completely defect - free and the short story I mentioned at the start of
this chapter would go some way to support this statement. That ’ s not to say that your processes
shouldn ’ t strive to achieve zero defects; it simply means that you ’ re probably not going to achieve a truly
perfect solution. In any case, you ’ d first need to define exactly what a “ perfect solution ” means. It will
almost certainly mean different things to different people. If you can stand back and say, “ It ’ s my best
work yet, ” then you ’ re probably in a good place. That doesn ’ t mean to say that you couldn ’ t identify
some areas of improvement or refinement. The problem is that you don ’ t always get the time to revisit
your work in the way that you would like. You test and review during the project to ensure that as many
defects are captured and fixed as possible, although there ’ s always the opportunity for some defects to
slip through the net. In fact, software is very often shipped along with a set of “ known issues. ” These
known issues have been identified and are not seen as show - stoppers for the release. Minor defects are
often carried over into future releases. The defects may affect a small area of the overall solution or occur
only under very specific circumstances. There may be issues with documentation and other artifacts that
are also not seen as critical.

 Quality is in the eye of the beholder, and it really depends on what is perceived as quality and what is
perceived as a defect. The word “ defective ” has many meanings, but the most applicable for this section
are “ lacking a part, ” “ incomplete, ” and/or “ faulty. ” If the scope isn ’ t defined sufficiently, not only is the
scope incomplete, it ’ s extremely likely that the end result will be, too. Your primary goal is to ensure that
your software and the associated artifacts are accepted by the recipient, whomever that may be and
whatever it is you ’ re delivering.

 Quality (and scope) matter because you need to produce the final state solution. If the applications,
environments, processes, and tools to achieve this don ’ t enable you to do it effectively, you ’ re in a bit of
trouble before you ’ ve even started. A development environment that crashes every five minutes will
have an impact on your ability to program. If the source control system is down, you can ’ t access your
artifacts. If it ’ s not backed up, you run the risk of losing everything. Furthermore, if the scope isn ’ t
agreed to and understood, you have no idea what you ’ re supposed to be producing, how you ’ re
supposed to be producing it, and what you ’ re ultimately meant to be delivering.

c02.indd 40c02.indd 40 1/20/09 10:42:52 AM1/20/09 10:42:52 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

41

 Quality (and scope) matter because whether it ’ s source code, configuration files, database artifacts, test
scripts, test data or documentation you ’ re producing and delivering, it ’ s typically subject to some form
of inspection, review, and acceptance. This could be a peer review, a team lead review, or even an
external review. It ’ s no good writing huge specifications only to find that the requirements are wrong, or
the specification is incomplete or there ’ s not enough detail. Furthermore, let ’ s assume that you ’ re
developing a solution for a third - party organization and you develop the components to adhere to your
own internal standards and practices. If the solution is subsequently reviewed by the external party, all
manner of issues could be found with it. In my experience, these types of issues can have a very
dramatic effect on the overall outcome of the project and its perceived quality. It ’ s no good finding out
that all the documentation and code will need to be re - factored because they ’ re not acceptable.

 You need to estimate the effort involved in developing and testing the item to meet this acceptance. The
level of testing will depend on the solution, but, ultimately, all the testing and acceptance is to ensure that
the final product is fit for purpose. Again, it ’ s no good finding out that the system should support automatic
recovery when it hasn ’ t been implemented. Although agile development techniques attempt to address this
by ensuring that construction iterations produce a working solution, what ’ s a working solution? End users
may consider this as the solution incorporates all the functionality they require to perform their job. Support
and operations staff may consider this as it meets all the necessary operability criteria. The application
maintenance team may consider this as the software meets all of its maintenance criteria.

 The most important thing in software development is to understand (and agree on) all the relevant
quality characteristics and include them in the overall scope.

 Construction Quality Echoes throughout the Project
 Improving quality means improving everything you do from start to finish. This means ensuring that
what comes out of the construction activities is fit for purpose. Initially, this means that it (the software)
can be passed on to the test team for further testing and verification with the minimum amount of fuss,
issues, and rework. You don ’ t want your test activities to be defect bound , meaning that there are either
too many issues to continue or there are show - stopping issues. However, you don ’ t want to push the
development out so far that it balloons the costs and timescales of the project.

 The beginning of this chapter looked at some of the quality characteristics your systems should display.
Now let ’ s consider some of the processes and practices that you can employ during construction to
improve the quality of your software and outputs, these activities include:

 Reviewing functional and technical designs and/or requirements

 Producing low - level technical designs and specifications for review and acceptance prior to coding

 Developing and reviewing components and documentation

 Developing and reviewing unit test plans, scripts, test data, and test harnesses

 Executing and reviewing unit tests and results

 Submitting components and artifacts for review and release

 Developing and reviewing integration test plans, scripts, data, and test harnesses

 Executing and reviewing integration tests and results

 Documenting completion reports

❑

❑

❑

❑

❑

❑

❑

❑

❑

c02.indd 41c02.indd 41 1/20/09 10:42:53 AM1/20/09 10:42:53 AM

Excerpted with permission of Wrox Press from Design - Build - Run

42

Part I: Production-Ready Software

 The exact order in which these activities are performed depends on your chosen development approach,
and the degree to which any of these activities is performed determines the quality of the outputs from
construction.

 Figure 2 - 1 shows a hypothetical but structured construction process based on the preceding activities.
The process outlined does not strictly follow any specific methodology; however, it covers the key
activities listed as well as indicating an initial flow (and order) and incorporates review checkpoints.

Validate
Requirements/

Designs

Produce
Low-Level
Model and
Designs

Review
Low-Level

Models and
Designs

Develop Unit
Test Scripts

and Test
Data

Review Unit Test
Scripts and Test

Data

Develop
Components

Review
Components

Develop Test
HarnessB

ui
ld

 a
nd

 U
ni

t
Te

st

Review Test
Harness

Unit Test
Components

Review and Sign
Off on Unit

Test Results

Produce
Completion

Report

Review and
Sign Off

on Completion
Report

Submit to
Release

Identify
Integration Test
"Assemblies"

Develop
Integration

Test Scripts and
Test Data

Review
Integration

Test Scripts and
Test Data

Develop
Integration

Test Harness

Review
Integration

Test Harness

Integration Test
"Assemblies"

Review and
Sign Off

on Integration
Test Results

Produce
Completion

Report

Review and
Sign Off on
Completion

Report

Submit for
Further
Testing

In
te

gr
at

io
n

Te
st

Figure 2-1

 Although the process outlined might appear quite lengthy and regimented, it ’ s really a question of how
quickly each of the steps can be performed. You may already be performing these activities on your
projects, although perhaps not in the same order as the plan shows or in a structured manner. For
example, when you ’ re developing your code, you typically review your code by reading through it.
However, when you write down the individual tasks, it can really help to identify productivity
enhancements and structured approaches. With the right tools and processes in place, there ’ s no reason
why the tasks and activities can ’ t be executed in a relatively straightforward and expeditious manner.
The process and the tools are all just another part of the overall scope of work.

 As I mentioned earlier, the degree to which each of these activities is performed is truly where the quality
bar lies. Setting the quality bar involves assessing the processes, practices, and tools, and evaluating these
against costs and timescales. That said, a very high quality bar generally means a high quality solution.

 The level and quality of testing and reviews you perform will ultimately determine the number of defects
known or perhaps unknown in the construction outputs. Your mission, therefore, should be to catch as
many defects as early as possible and assess/fix them accordingly . To achieve this goal, you will need to put some
industrial - strength processes and tools in place, while balancing them against budgets and timescales.

 The development methodology and approach will typically stipulate what the inputs and outputs of the
activities are. In addition, the activities may not be performed in the order shown. Figure 2 - 1 depicts two
high - level processes, one for “ Build and Unit Test ” and one for “ Integration Test. ” These activities are

c02.indd 42c02.indd 42 1/20/09 10:42:53 AM1/20/09 10:42:53 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

43

described in the following sections and would generally apply to all components in the production -
 ready solution. This includes all framework and architecture components, application components, batch
processes, reports, tools, scripts, and so forth.

 The Build and Unit Test Process
 The following describes the activities shown in Figure 2 - 1 :

 Validate requirements/designs. First and foremost, you need to ensure that the requirements
and designs meet the needs of the development team. That ’ s not to say that if you think the
design or requirements are poor or could be done better that you shouldn ’ t flag it. You need to
ensure that the inputs to the development phase are complete and unambiguous, and are
sufficient for you to perform development, unit testing, and integration testing. During
requirements and design validation, it ’ s best to keep a log of queries, risks, and issues that may
arise from the review, and to ensure that these are tracked and managed appropriately. These
queries will need to be addressed before the construction can be fully closed off on the
component. The requirements and designs should map back to the quality characteristics and
include all the relevant items. The actual content of the requirements or design will depend
entirely on the type of component that needs to be built and tested. However, the following
provides a reasonable starting point:

 Functional design/requirements — A detailed description of the component and what it is
meant to do. This could consist of use cases, activity diagrams, flow diagrams, and textual
descriptions to describe the component in detail. The functional aspects may also include
various logging, usability, accessibility, and security information.

 Technical requirements and considerations — A detailed description of the component ’ s
technical characteristics, such as failure and recovery scenarios, exception processing, and
performance considerations. The technical requirements and considerations may also
include areas covering configuration, scalability, resilience, and so forth. The requirements
should map back to the relevant quality characteristics.

 Monitoring requirements and considerations — A detailed description of the
component ’ s monitoring characteristics, such as instrumentation requirements and logging
and tracing requirements.

 Operability considerations — A detailed description of the component ’ s operability
considerations — for instance, whether the component is controlled by batch or how the
component is started/stopped and managed.

 Develop unit test scripts and test data. The unit test plan contains the list of tests that are going
to be carried out. Ideally, tests should be grouped into the following categories:

 Functional tests — Covering the necessary functionality outlined in the functional
requirements.

 Technical tests — Covering the technical requirements including performance. Where it ’ s
not possible to conduct certain tests because of environment limitations, these need to be
logged so that they can be carried out later.

 Monitoring tests — Covering the monitoring requirements, including all instrumentation
updates and logs.

 Operability tests — Covering operability requirements. Again, limitations in the environ-
ment that don ’ t support certain tests need to be flagged for execution in a later test activity.

❑

❏

❏

❏

❏

❑

❏

❏

❏

❏

c02.indd 43c02.indd 43 1/20/09 10:42:54 AM1/20/09 10:42:54 AM

Excerpted with permission of Wrox Press from Design - Build - Run

44

Part I: Production-Ready Software

 Each group of tests should be further divided into successful scenarios and failure scenarios. Each test
must contain a detailed description of the test being carried out and the relevant input data and expected
results. The expected results should include the following (where appropriate):

 Return values and output values (including any external updates, such as file system,
database, and so on)

 Instrumentation and diagnostic outputs (including events, tracing, performance counters,
and so on)

 There may be other outputs for the particular unit that should also be captured.

 Review unit test scripts and test data. The unit test plans and data are reviewed against the
Develop Unit Test Scripts and Test Data Checklist. The checklist is essentially based on
the preceding recommendations and practices — for example, ensuring that the unit tests are
present and correct and contain all the necessary conditions and expected results, and that the
test data being used is appropriate. The reviewer then provides comments back to the developer
for further clarification and/or updates. Where necessary, the reviewer should work with the
developer to ensure a full understanding of the comment and its impact. Communication is
paramount in software development.

 Develop components. The components are developed according to the functional and technical
requirements and specifications. While developing components, you should consider the items
for the Develop Components Checklist:

 All code must conform to the coding standards and guidelines.

 All code is checked for performance and technical issues.

 All comments adhere to the commenting standards and documentation - generation
guidelines.

 All functional and technical queries must be addressed.

 All additional/modified exceptions and contextual information must be agreed on.

 All modified input/output values must be agreed on.

 All instrumentation and diagnostic updates must be agreed on.

 All implementation updates and deviations must be agreed on.

 Review components. The components are reviewed according to the functional and technical
requirements and specifications, as well as the Develop Components Checklist, and comments
are provided for further updates. Again, the checklist is based on the outlined recommendations
and practices. It is important to ensure that any modifications to the specification are agreed on
by the relevant groups of people, such as end - users, business staff, support staff and so forth. It
is equally important that this information is passed on to other teams, such as the testing team,
to ensure that they are captured and incorporated appropriately.

❏

❏

❑

❑

❏

❏

❏

❏

❏

❏

❏

❏

❑

c02.indd 44c02.indd 44 1/20/09 10:42:54 AM1/20/09 10:42:54 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

45

 Develop unit test harness. The test harness is developed in accordance with the unit test plan.
During development of the test harness, the following also needs to be ensured:

 All code must conform to the coding standards and guidelines.

 All code is checked for performance and technical issues.

 All comments adhere to the commenting standards and documentation generation
guidelines.

 All unit test conditions have the necessary test classes and methods.

 All input data matches the unit test plan.

 All output data and expected results match the unit test plan.

 All actual results are verified (where possible, this should not involve manual effort).

 Any unexpected results or conditions cause the tests to fail.

 Review unit test harness. The test harness is reviewed according to the unit test plan and the
Develop Test Harness Checklist, and comments are provided for further updates.

 Unit test components. The components are unit tested and verified. During this activity the
following needs to be ensured:

 All unit tests pass and provide all the relevant assertions.

 All code is covered. Where code can ’ t be tested for whatever reason, it must be flagged so
that it can be tested later or removed if not required.

 All changes to expected results or actual results are agreed on.

 All changes to implementation are agreed on.

 Review and sign off on unit test. The unit test results are reviewed and signed off on according
to the Unit Test Checklist, which is based on the preceding recommendations. Comments are
provided for further updates.

 Produce completion report. The completion report is compiled and includes the following:

 Updated log with all queries addressed where possible and all open queries or additional
testing requirements documented.

 Completed unit test plan and test data.

 Unit test harness source code and artifacts. These also include the actual results extraction
scripts and tools. You may be able to use these later.

 Component source code and artifacts such as configuration files.

 Source code compliance reports. The compliance reports are generated from the static code
analysis tools and the performance analysis tools. The compliance reports cover all source
code, including the unit test harness and the component source code.

 Unit test results, including all instrumentation extracts and logs.

 Code coverage report detailing what code has been covered. Where it ’ s not possible to
cover certain aspects, a detailed synopsis is provided.

❑

❏

❏

❏

❏

❏

❏

❏

❏

❑

❑

❏

❏

❏

❏

❑

❑

❏

❏

❏

❏

❏

❏

❏

c02.indd 45c02.indd 45 1/20/09 10:42:55 AM1/20/09 10:42:55 AM

Excerpted with permission of Wrox Press from Design - Build - Run

46

Part I: Production-Ready Software

 Performance and technical reports detailing analysis of components and database
elements.

 Review comments showing where each comment has been addressed or a detailed
synopsis of why it has not been addressed.

 All documentation, whether generated automatically or otherwise.

 Review and sign off on completion report. The completion report is reviewed and signed off
on according to the Completion Report Checklist, and comments are provided for further
updates.

 Submit to release. Once the completion report has been reviewed and signed off on, everything
is in place and can be submitted into a formal release according to the release process. Each
release package will have different configurations and include different artifacts; as such, all
artifacts included in the completion report should be included in the configuration management
system and submitted to build (where appropriate).

 The scope encompasses the activities, tasks, and outputs of the chosen construction process. The
activities are intended to deliver a high - quality solution to the further test phases. Later in this chapter,
you look at the costs associated with quality, and these can be applied more importantly to the costs
associated with poor quality. Whether it ’ s a tool, a core architecture component, or anything else for that
matter, the construction quality needs to be met and maintained through the lifetime of the project or
solution. Although I ’ m not dictating the actual approach, the essence of the tasks and activities should be
considered carefully. This is just one area where quality and scope are interrelated. The more activities
involved in construction, the longer it ’ s likely to take and cost. However, to balance this out, savings can
be made further down the line by reducing testing and fix effort as well as support and maintenance
effort.

Code Quality 101
 It can sometimes be very difficult to agree on the necessary quality characteristics because of different
points of view. For instance, in the previous chapter I posed the question, “ What defines code quality? ”
Code quality can again mean different things to different people. However, as far as I ’ m concerned the
following are just a few of the key principles and practices of “ code quality 101 ” :

 Conforming to naming conventions, coding standards, and best practice architectural and
language patterns

 Well - structured and commented code for maintainability and readability

 Employing layering, isolation, and encapsulation techniques to promote re - use and to reduce
duplicated code sections

 Modular code that is not overly complex, not too difficult to understand and test, such as not
including large classes, large methods, and multiple nested conditions

 Not including any redundant code, unused libraries, and/or parameters

 Using configuration values instead of hard - coded values and “ magic numbers ”

 Using interfaces, late instantiation techniques and “ mock ” objects or stubs/simulators to
support thorough testing

 Including exception handling and resilience patterns

❏

❏

❏

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c02.indd 46c02.indd 46 1/20/09 10:42:55 AM1/20/09 10:42:55 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

47

 Including logging, tracing, and diagnostics for operability and supportability

 Efficient use of system resources and tuned for “ production ” performance

 I ’ m using “ code quality 101 ” to refer to the very basic principles and practices for quality code. “ 101 ”
has long been used by teaching institutes and training vendors to identify the first and most basic
course in a series.

 It is entirely possible that the artifact could meet all its requirements without ever incorporating any of
the above, especially if they ’ re not defined and included within the scope. For example, I could ask
someone to write a simple tool for use during incident investigation. It definitely depends on the person
as to whether all, some, or none of the preceding would be taken into account. More important, it really
depends on how I set the scope for the task. In the software industry, we often take “ best practice ” for
granted. We sometimes assume that because these practices are well known, every program will (and
must) conform to them and that every developer will incorporate them. However, I may not actually
require all the “ best practice ” for a particular task. There ’ s the infamous “ throw - away code ” situation.
This is when something needs to be done very quickly and it ’ s only required for a very short - lived
period. In this situation, performing “ all ” the best practices isn ’ t always necessary; however, the item still
needs to be fit for purpose. The item is simply a means to an end. However, I often find that “ throw -
 away code ” isn ’ t just a means to an end, and if I need it now, then I need to really understand whether
it ’ s needed in the future.

 There can be very differing opinions on what “ best practice ” actually is and what it means. As the
software industry progresses, new practices and patterns are always identified and become “ the thing to
do. ” If the quality is included in the scope, then a system that meets its completion criteria will also meet
all its true quality criteria. The following provides some additional context for some of the code quality
items presented in the preceding list:

 Standards and guidelines — Development standards ensure that all developers are writing
similar code and artifacts that adhere to a given set of standards. These need to include
commenting standards, naming conventions, configuration, exception handling,
instrumentation, and logging and architecture usage. The standards also need to cover the
rudimentary practices for performance and other technical characteristics. These standards and
procedures should cover all languages and technologies, such as database artifacts, source code,
and scripting languages. In addition, the standards need to be followed for everything that this
developed, including tools and productivity scripts.

 Reusable components and layering — During development, you will develop a number of
different components — some for the core application, some for batch, some for reporting, and
some for tools. Layering the architecture and components so that you can reuse as much as
possible for many different purposes will reduce overhead and improve the overall quality of
the solution. For instance, a logging component should be able to be used everywhere to ensure
consistency throughout the system. Ensuring that architecture components are application
independent greatly improves reusability. Often architecture components are built with the
assumption that they are going to be used by the core application and, as such, are not so
adaptable to other uses such as batch, reporting, and tools. Batch and reporting generally
involve developing generic services . For example, a common batch component is one that can
execute a stored procedure and write the results to a file. This functionality could be reused by
your test tools to extract actual results from the database for comparison against expected
results. Furthermore, these scripts could be used in live environments to extract data for issue
investigation.

❑

❑

❑

❑

c02.indd 47c02.indd 47 1/20/09 10:42:55 AM1/20/09 10:42:55 AM

Excerpted with permission of Wrox Press from Design - Build - Run

48

Part I: Production-Ready Software

 Configuration values and settings — Your system is going to need to deal with a number of
different environments and situations, and one size doesn ’ t fit all. You need to have an
appropriate level of configuration to support this. Your instrumentation and logging should be
highly configurable to support the different levels required in the different environments. You
should also ensure that database connectivity is highly configurable for the same reasons. Low -
 level configuration components can be used to standardize access to configuration values and
settings, parts of which can often be generated from the configuration files and they can also be
reused by tools and other components.

 Instrumentation and diagnostics — You need to ensure that the appropriate level of
instrumentation and diagnostics is in place in your applications and tools so that when issues
arise, they can be tracked down quickly and efficiently. Test tools are often thought of as a means
to an end and don ’ t often include logging or instrumentation. However, including logging and
instrumentation in the tools themselves enables you to measure their own performance and
effectively diagnose any bugs in them. Incorporating reusable instrumentation and logging
classes within the architecture allows you to make use of them everywhere. You must also
ensure that instrumentation and logging don ’ t adversely affect performance. The
instrumentation needs to be configurable so that it can be tuned for different environments. This
is to ensure that you are in a position to react to issues and turn them around quickly. It is
equally important that you test and validate the instrumentation and logging outputs to ensure
that they are correct. When you get to the real issues with your system, the quality of your
instrumentation and diagnostics will count more than anything else. Having productivity tools
and scripts to gather and extract logs, instrumentation, and events allows you to verify their
correctness during testing and can be reused during live service incident investigation.
Instrumentation and logging should be highly configurable so that the most appropriate levels
can be calibrated in each environment.

 The following sections take a slightly closer look at some of the practices I ’ ve mentioned in the build and
unit test process, namely:

 Code profiling and peer reviews

 Code coverage

 Unit testing

 Documentation generation

 Code Profiling and Peer Reviews
 There are many tools to assess code quality. These tools can automatically highlight various errors with the
code. Some tools work by analyzing the code from a static point of view, whereas others examine the
solution while it ’ s actually running. However, it may not be possible for all your code to be automatically
profiled. For instance, you might be using a custom package that doesn ’ t support it. Therefore, documented
standards and “ Mark One Eyeball ” (or manual) reviews are typically the only way of checking the quality.
In fact, manual reviews and checks should still be performed to ensure complete quality.

 As much as your processes and tools allow you to perform your own quality checks, a peer review will
uncover many different issues. Peer reviews should be performed throughout the development process,
and should focus on all areas, not just code. Peer reviews should cover unit test plans and data,
integration test plans and data, source code, and other artifacts, as well as release readiness reports.
A peer review checklist should be used and updated as they are conducted. Peer review comments
should be documented thoroughly and managed appropriately. Where common issues are found, they

❑

❑

❑

❑

❑

❑

c02.indd 48c02.indd 48 1/20/09 10:42:56 AM1/20/09 10:42:56 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

49

should be filtered through to the productivity and process guides to provide more information. It often
helps to have a Top 10 list of common issues to avoid future occurrences.

 Mark One Eyeball is a basic military term that refers to visual reconnaissance instead of using any
high - tech means when on maneuvers or out searching.

 Using code analysis and code profiling tools can help to ensure adherence to standards and highlight
potential performance issues with the code. It also helps with peer reviews because the outputs from the
profiler are the starting point for the review. If the report shows a large number of errors that can ’ t be
explained, it is a fairly reasonable indication that the code isn ’ t ready.

 Static code analysis generally checks the code against coding standards, abstraction and dependencies,
configuration settings, and other statically identifiable issues. For example, the profiler may detect the
keyword new inside a loop and raise a warning. Static code profilers can often find potential areas for
bugs, memory leaks, and so on. They often point out many naming standard errors, unused libraries,
methods and parameters, and hard - coded values.

 One very important aspect of code profiling is the “ cyclomatic complexity ” reporting features. In short,
cyclomatic complexity is a measurement of how complex the code is and the number of test cases
required to achieve coverage. The measurement is based on the number of branches and paths in the
code. The more branches and paths in the code, the more complex it is.

 Dynamic code profiling takes place when the code is actually executing. The tools typically look at the
resource utilization of the application, memory, CPU, database, and so on. They can often highlight actual
memory leaks and inefficient code. The output reports are used to tune the application accordingly.

 These tools often require up - front configuration and may not support all languages and technologies
used in the project. As such, they should be complemented with peer reviews to ensure that the code
adheres to the appropriate standards.

 Code profiling should be used carefully, and often some components need to deviate from the standards
for very good reasons. These components need to be noted, understood, and incorporated. In general,
using these tools early on can provide some useful insights and help to improve code quality during
construction. When the technical test fully ramps up and starts probing, you can bet your bottom dollar
that it won ’ t be long before a profiler is wheeled out to “ inspect ” the solution. Having them used up
front will really help to avoid re - work later. The technical testing often encounters very convoluted
issues that code profiling can often help to diagnose.

 Code profiling should be automated and easy to execute. It ’ s more likely to be used if it can be executed
easily. The results need to be captured for analysis and possible correction. It ’ s important that the team
understand the outputs of the report in order to address the issues. Writing a guide for executing and
analyzing code profiling is a good place to start.

 In addition to code profiling tools, stored procedures and other database artifacts can be profiled to
identify potential bottlenecks in the data layer. This is typically achieved by running an execution plan
against the stored procedure for various scenarios. The report will show how efficient the procedure is
and will often highlight areas for improvement.

 It ’ s important that the scope includes the use of these tools (where determined) and, more important, the
details of the underlying rules. All too often there ’ s a debate over which configuration is the right one
and which rules should be switched on or off.

c02.indd 49c02.indd 49 1/20/09 10:42:56 AM1/20/09 10:42:56 AM

Excerpted with permission of Wrox Press from Design - Build - Run

50

Part I: Production-Ready Software

Code Coverage
 Using a code coverage tool effectively is a great way to determine how much of the source code is
executed during testing. The outputs can be used to determine whether additional tests need to be
developed to hit more code or, in some cases, the results can identify redundant code. The code coverage
tool typically injects instrumentation into the code so that when a test is executed the tool can examine
how much code has been executed. I typically refer to these as covered builds . The code is measured on a
number of criteria that includes but is not limited to:

 Function (methods) — Measures the methods that are executed.

 Statement — Measures the statements in each method that are executed.

 Condition — Measures the conditions that are executed.

 Path — Measures the conditional paths that are executed.

 Entry/exit — Measures the number of permutations of entry and exit for the function (method).

 It may not be possible to automatically check code coverage for your entire solution; therefore, the unit
test approach needs to be documented and understood so that the development team produces and
executes scripts that cover the required amount of code. The code review approach needs to be
documented and understood so that Mark One Eyeball reviews confirm this has been achieved. Where
possible, the unit test approach and review should be aligned to the rules outlined previously.

 Mission - critical systems often require 100 percent of the code to be covered. If you commit to achieving
100 percent code coverage during unit testing, you ’ ll need to include tests for every condition and every
possible scenario. To ensure this happens, you may need many additional test classes, stubs and/or
mock/simulator objects, as well as the conditions and scripts.

 Developers often write defensive code — for instance, including if statements and null checks. While
this may be seen to add to the robustness of the solution, you actually need to test that they work. If you
have high code coverage criteria then you will need to devise tests and data in such a way that each
scenario can be fully tested. I personally believe that every line of code you write should be tested
thoroughly.

 Achieving 100 percent code coverage during unit testing doesn ’ t mean the application works the way it
should or that it even displays all the necessary quality characteristics. It ’ s just one part of the scope and
quality. Maintaining unit tests and integration tests can be a costly business and, therefore, it ’ s important
that they do exactly what they should — to ensure that the system works correctly.

Unit Testing
 Although the concept of unit testing has existed for a long time, there are differing views on what unit
testing should actually test and how it should be performed. Traditionally, unit testing has been
categorized as a “ white - box test ” that tests the smallest part in the solution, such as a single method. The
term “ white - box ” is used because you can see the actual code that is going to be executed by the method.
However, in test driven approaches, the tests are initially based on the designs (functional and technical)
and the public interfaces exposed by classes because the actual code hasn ’ t been written at the time the
test cases are being devised. In either case, unit testing should be aligned with code coverage in that the
tests should be devised to cover the following aspects of the unit:

❑

❑

❑

❑

❑

c02.indd 50c02.indd 50 1/20/09 10:42:56 AM1/20/09 10:42:56 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

51

 Statements

 Conditions

 Paths

 Entry/exit permutations

 Unit tests are independent of each other, that is, they shouldn ’ t rely on the outcome or state from a
previous test. Unit tests should support being executed in any order.

 Unit tests aren ’ t really supposed to span outside the boundaries of the actual class being tested — for
instance, if the class being tested contains a method that makes a call to another referenced class, the unit
test spills into the referenced class. To support testing the unit in complete isolation, an interface should
be defined and a “ mock ” object should be developed and used during unit testing. This approach can
improve the overall quality of unit testing because the mock object can be written to simulate various
conditions.

 Mock objects are often referred to as stubs or simulators . The complexity and features of the mock object
will depend entirely on its purpose. In most cases, the mock object needs to contain conditions for each
of the possible calls and permutations from the consumer. The development and test effort required for
this needs to be captured in the overall budgets and timescales. Furthermore, a lot of time, effort, and
money can be wasted trying to determine whether it is the code that doesn ’ t work or the mock object
that is not functioning correctly. It is not always possible to keep the mock object simple but the more
you try to, the easier it is to test and fix.

 The level and approach to unit testing is entirely dependent on the system being implemented. In some
cases, unit testing is a form of integration testing in that some objects are not stubbed and as such they
are called as part of the overall test. Although this can be seen as wrong in the purest view, it is
important that the approach is agreed to by all the stakeholders, rather than having a debate about it
afterwards. A classic example is instrumentation and diagnostics. It is perfectly possible to mock these
objects and make gathering the output for completion much easier. However, using the real object early
on (where possible) will ensure that the system works the way it should in production. This is nothing
more than striking a balance between reality and theory. These decisions and the unit testing approach
need to be documented and included in the scope, as they will have an effect on the budgets and
timescales.

 There are many tools that help to automate unit testing rather than you having to execute scripts
manually. I ’ m definitely a fan of automated unit testing. The business of executing tests manually is
simply a chore and it also means that an automated regression test capability can ’ t be employed, which
affects the regular integration approach and adds unnecessary delays on the project.

 Documentation Generation
 Using documentation generation tools helps with the production of system documentation for handover
and future development purposes. Documentation is generated from the comments in the code and can
be a lot easier than writing it by hand. The generated documentation typically includes:

 Namespaces and namespace hierarchy

 Class, interface, delegate, and enumeration lists and descriptions

❑

❑

❑

❑

❑

❑

c02.indd 51c02.indd 51 1/20/09 10:42:57 AM1/20/09 10:42:57 AM

Excerpted with permission of Wrox Press from Design - Build - Run

52

Part I: Production-Ready Software

 Public property, method, and parameter lists and descriptions

 Return value and exception lists and descriptions

 The output is usually a compiled help file that contains links to make it easier to navigate. However,
these tools do not support all languages and technologies and often require up - front configuration to be
used effectively.

 Your commenting standards need to stipulate what needs to be included in your code to support
documentation generation, and your process guides need to contain step - by - step instructions on how to
produce the relevant system documentation.

 Many other practices can be employed during the construction phase and some of these are highlighted
later. The practices listed here are simply a core set of practices that should be considered during build
and unit test to ensure high - quality outputs. While the amount of work may have increased during
construction, the savings further down the line will be truly beneficial.

 The Integration Test Process
 The integration test process and activities are very similar to their unit testing counterparts, so I won ’ t go
into the details again. Integration testing is generally considered black - box testing . The tests are designed
to call the assembly through a public interface on the first class (or object) in the assembly, and assert the
expected results. The tests are designed to cover the main integration scenarios between the individual
components. Running integration tests and examining the code coverage often highlights areas where
additional tests could be developed or where there ’ s redundant code in the solution. Redundant code
isn ’ t always picked up by static code profilers because they typically check only to see if there are
references (or calls) to classes and methods within the solution. The code coverage output shows exactly
what was executed and called. However, this assumes that you have a very thorough set of integration
tests.

 Successful integration tests start with identifying the assemblies in the solution. It is important to get the
right level of granularity when performing integration tests. Integration testing can be performed in
many ways. However, in a lot of cases, integration tests start by testing the system with real components
where stubs or mock objects were being used for unit testing. This has the effect of testing the flow
through all the components below it. Each layer is tested in turn, moving up to the very top layer. This is
typically referred to as a bottom up approach. However, in some cases, an assembly can be an entire
vertical slice of an application — for example, the Create New Account function. It is important to
identify and agree on the assemblies and the approach early so that they can be tested appropriately and
avoid issues later in the lifecycle.

 It ’ s very important to remember that integration testing may also need to use mock, stub, or simulator
components. Although this might seem to be a contradiction in terms, integration testing doesn ’ t always
test the entire solution. For example, suppose you ’ re using a third - party component for username/
password authentication. There may be constraints whereby you can ’ t use the actual component during
integration testing. For example, it might require some backend features that aren ’ t available. Therefore,
it will need to be “ stubbed ” or “ simulated ” during development and integration testing.

❑

❑

c02.indd 52c02.indd 52 1/20/09 10:42:57 AM1/20/09 10:42:57 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

53

 The integration tests are again organized into the following various categories and test both success and
failure scenarios:

 Functional tests

 Technical tests

 Monitoring tests

 Operability tests

 It is important during integration testing that the entry/exit testing be thorough and that it exercise all
the various permutations and possible outputs to ensure that the assembly is fit for purpose. Testing a
single permutation will only go so far in assessing the quality of the build.

 The construction process should focus on capturing and correcting as many defects as possible prior to
formal testing. What comes out of construction will ultimately determine how straightforward the
remainder of the project goes. When there ’ s a mass of defects raised beyond construction, it is not long
before someone says “ How many of these could have been detected earlier? ”

 Defects Affect Testing and Ongoing Development
 You saw in the previous chapter that you can potentially have multiple test activities and/or phases
running in parallel. Each of the test teams will generally want their fixes as soon as possible. Functional
testing may argue that the system needs to be functionally correct and performance doesn ’ t matter at this
point. Performance can always be enhanced and tweaked later, or so the argument goes. Technical
testing, on the other hand, may argue that the system needs to be technically correct. Obviously, both
sets of requirements need to be met to ensure that the system is production-ready. The fixes need to be
managed, prioritized, and implemented according to their allotted priority. Furthermore, functional and
technical test phases can often be broken into multiple streams of testing, with each stream concentrating
on a particular area or part of the system. For instance, technical tests might split, with one stream
concentrating on failure and recovery scenarios, while another focuses on monitoring and operability
tests. Functional tests may be split into functional areas or application slices. For example, one area deals
with creating new accounts while another area deals with online shopping or cart management.

 Once you start testing (and acceptance activities), defects start getting raised and fix turnaround time
becomes paramount. Fix turnaround time is the total time it takes to perform all the necessary activities
to get a fix out to the required environment. There could be multiple teams of people that are potentially
unproductive because of show - stopping defects. Testing and acceptance is basically halted until certain
issues are resolved. This can impact not only deadlines, but also costs. If customers are involved in the
testing and there are major defects, it can also cause further perception issues with respect to the
product ’ s quality. If the development team is impacted by a large number of defects that need to be
fixed, it can also cause further delays and cost overruns to outstanding development efforts, such as the
inclusion of additional functionality.

 When formal testing begins, there are usually many issues that need to be addressed before testing is
fully up and running. These early issues are generally not related to the actual application or its
functionality. However, there is a fine line between the two.

 Regardless of whether you are conducting unit, integration, or system testing, the profile of defects
generally follows the path outlined in Figure 2 - 2 .

❑

❑

❑

❑

c02.indd 53c02.indd 53 1/20/09 10:42:57 AM1/20/09 10:42:57 AM

Excerpted with permission of Wrox Press from Design - Build - Run

54

Part I: Production-Ready Software

 Each of these high - level defect categories is discussed in the list that follows:

 Environmental issues — These issues concern getting the test environment up - and - running.
Assuming that the test hardware is in place, these issues are more concerned with access to the
environment, deploying the application in the environment, ensuring the correct configuration
settings are in place, installing the test data, and bringing the application into a testable state.

 Tools and script issues — These issues concern executing actual test scripts, getting the test
tools up - and - running, injecting transactions manually or automatically from the tools and
scripts, and determining the results. The scripts may have been developed separately from the
test tools and this is the first time they ’ ve been put together. The tools themselves may be new,
and “ operator error ” may come into the equation. Other issues can be encountered when trying
to compare results — for example, actual results can ’ t be extracted or compared properly.

 Test data issues — With the environment and script issues resolved to a degree, you typically
start to experience issues with the test data. Test data issues can cover a wide variety of
scenarios, including the following:

 Not all the test data is installed.

 There ’ s too much test data to load in the test environment.

 The data is actually incorrect or incomplete.

 Real issues (bugs) — Once the testing activities are truly up - and - running, you start to identify
the real bugs in the system. That ’ s not to say that you won ’ t find anymore bugs in the
environment, test tools, or test data, but you ’ ve gotten yourself into a position to be able to test
and uncover the real issues that need to be dealt with.

 Testing is the primary proving ground for the solution. No matter which approach is actually taken, the
software must ultimately meet all its functional and technical requirements; therefore, the tests that are
carried out need to ensure that this is achieved. The quality of the software and the testing is going to be
the biggest area of concern when testing begins. Having fit - for - purpose and production - ready
applications, environments, processes, and tools, as well as trained test (and fix) resources, will greatly
improve the quality and performance of your testing.

 Fixing Defects Quickly Can Reduce Quality
 When testing halts because of show - stopping issues, the development or fix teams need to turn around
defects fast. In situations like this, the quality can start to drop because you need to get fixes out to the
test streams very quickly. All the good stuff you put in place during development typically gets put to

❑

❑

❑

❏

❏

❏

❑

Figure 2-2

Environmental
Issues

Tools and
Script Issues

Test Data
Issues Real Issues

c02.indd 54c02.indd 54 1/20/09 10:42:57 AM1/20/09 10:42:57 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

55

the side in order to drop a fix to a test team quickly. There isn ’ t enough time to update the design; have it
reviewed and signed off on; update the code; update all the unit tests; update the integration tests;
update the regression tests; run them all; ensure code coverage remains the same; profile the code for
memory leaks, performance, and adherence to standards; generate the documentation; collate all the
results; and have it all reviewed and signed off before delivering a fix into the build process; have it go
round the entire build and regression cycle; and finally getting it installed in a test environment. That
said, not all defects will need to go back as far as the requirements or design stages, and everything will
depend on the criticality of the defect. In addition, the level of tooling that is used can dramatically
reduce the overall time to deliver a fix while retaining the appropriate levels of quality. In most cases, the
quality can drop when:

 Testing is blocked

 Tuning and re - factoring are required

 These scenarios are discussed in the following sections.

 When Testing Is Blocked
 When either show - stopping issues occur or a large number of fixes need to be delivered during testing,
the development team generally turns into a rapid response unit and really needs to turn around fixes
very quickly to keep the test teams up and running and on track. This is often achieved by short - cutting
the quality process to get the fix out the door and sweeping up the other items later. Interestingly
enough, it is exactly the same situation with issues that are encountered during live service, although
these are generally tested more thoroughly prior to being deployed.

 An example of this situation is the infamous “ one - liner ” — a very simple change needs to be made to
one line of code that will only take two seconds to implement. The test manager is breathing down your
neck about how many people are waiting for the fix, and the development manager is embarrassed at
how such a simple issue wasn ’ t found during build, unit, and/or integration testing.

 In these types of situations, it ’ s not very long before the decision is made to compile the solution and
drop a few “ hot - fixed ” DLLs into the environment to keep everyone happy and everything running
smoothly. Another very common example of hot - fixing is the even more infamous “ don ’ t know, can ’ t
reproduce ” type of issue. You ’ ve looked at the code, the data, the scripts, the logs, and everything else,
and you just don ’ t have a clue what ’ s going on. This invariably leads to adding more trace statements to
the component in the hope that this will provide an insight into what is going on so that the defect can
be found and fixed. This again is very often the case during technical testing and early live service
because in general verbose logging and tracing is turned off to improve the overall performance of the
system.

 The rationale for hot - fixing when applied to a test phase goes along the lines of “ If people can ’ t do
anything anyway, we can ’ t really make the situation any worse, so let ’ s give it a go. ” Issues encountered
during live service may still shortcut the full quality process, but to a much lesser degree than during
test. More often than not, the fix will be tested and proven, put into a formal release and regression
tested prior to being deployed to the production environment.

 A formal hot - fix or “ patch ” process should be identified early to ensure that it delivers quality artifacts
and doesn ’ t necessarily leave an abundance of tasks to be carried out later. It ’ s equally important that all
hot - fixes or patches are uniquely identified and have a release note, just like any other software release.

❑

❑

c02.indd 55c02.indd 55 1/20/09 10:42:58 AM1/20/09 10:42:58 AM

Excerpted with permission of Wrox Press from Design - Build - Run

56

Part I: Production-Ready Software

 When Tuning and Re - Factoring Are Required
 During development the full end - to - end product is not typically technically tested in its entirety. For
instance, certain failure and recovery scenarios may need to be tested in a specific environment. Load
testing may also require a specific environment. Only when the complete system is tested in a live (or
live - like) environment, with live data and live situations, do you get a true indication of the system ’ s
actual technical characteristics, such as performance, stability, and recovery. This is also true of some
functional characteristics, but these will generally be dealt with in the normal way, unless of course they
happen to be show - stoppers. It ’ s not often that components need to be completely re - factored as a result
of functional inadequacies, although it has been known to happen. Core algorithms and calculations can
be so badly written that they simply have to be rewritten.

 When a component isn ’ t functionally or technically satisfactory, it may be tuned or sometimes
re - factored completely. This can often be to the detriment of its functionality but more so to the detriment
of its quality. The component is a bottleneck to the continuation of technical testing and needs to be fixed
and fixed quickly. The really technical folks know all about tuning, but explaining this in a defect report
will take too long and the turnaround time is not quick enough. In some cases, this leads to a situation in
which the technical team makes local updates to the component to continue testing.

 Furthermore, this technical tuning and re - factoring exercise generally doesn ’ t include updating the
documentation, updating the unit tests, updating the integration tests, and so on, and once again the
quality drops, leaving everything else to be swept up later.

 A formal approach to tuning and re - factoring should be agreed on so that whatever happens, the
components maintain their quality. Clearly, the more that you can do during the construction phase to
ensure that the components are technically correct, the better. Not having very large and unwieldy
components in the solution can help. The smaller the component, the less there is to change.

 When Quality Drops, Sweeping Is Left
 Sweeping is a slang term to describe tidying up the system and bringing it back up to its original quality
bar. How high you set that bar will depend on what needs to be done. However, with respect to the
construction process outlined earlier in this chapter, sweeping would actually involve all the following
tasks:

 Updating designs and other documentation

 Sweeping the code and updating comments, updating logging and tracing, updating exception
handling, and generally tidying up the code

 Updating and correcting unit tests and integration tests, as well as associated documentation,
scripts, and test data

 Re - executing all the quality and performance tools to ensure that adherence to standards and
profiles and code coverage is achieved

 In fact, sweeping is everything you would do during the construction phase, albeit in a usually
compressed timeframe (which, again, can affect the overall quality of the outputs).

 The rationale behind sweeping can be summarized as follows:

❑

❑

❑

❑

c02.indd 56c02.indd 56 1/20/09 10:42:58 AM1/20/09 10:42:58 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

57

 When the level of defects drops, the fix team can split their time between fixing bugs and
tidying up everything else.

 As long as the “ smoke ” tests that are included within the regression testing pass, the solution is
 “ good to go ” even if the unit tests and integration tests don ’ t pass. The cost implications of
sweeping are not always detrimental to the overall financial state of the project; however,
depending on the size of the system and the level to which the quality has dropped, it can take a
large effort to bring it back up again. Sweeping exercises really need to be planned and executed
effectively; otherwise, they can introduce more defects and again reduce the overall quality of
the solution.

 There are two main reasons for bringing the quality bar back up. The first is that when the system goes
into live running and maintenance, it needs to meet the original quality characteristics so that it can be
supported and maintained efficiently. The second reason is that most projects have multiple releases, and
when you pass all the artifacts to the next team, everything needs to meet the required quality so that
they can use them to effectively design and develop the next release.

 The bottom line: Wherever possible, quality should be maintained throughout the project and not left to
a sweeping or cleanup operation.

 More Tips for Improving and Maintaining Quality
 In the previous section you saw the typical profile of defects once the software leaves construction, and
their potential impact. You need to use this information to your advantage to improve the quality of your
processes, tools, and applications. You ’ ve also seen some practices that you can employ during
construction to ensure your systems meet the necessary quality characteristics. These included thorough
unit testing and integration testing, as well as including instrumentation and diagnostics. The following
are some additional tips for improving construction quality and the construction process:

 Work with the test teams. While you ’ re in development, the test teams are busy working away
on their own agenda and that ’ s usually developing their own test plans, test scripts, and test
data. First, you need to ensure that what you are doing is in line with their expectations and that
you are working from the same sets of requirements and designs. If you are developing to
version 1 of a document and the test teams are working off of version 2, what you will deliver is
not going to match their expectations and you ’ ll encounter issues (see the “ Define releases and
their content ” bullet later in this list). Another benefit of this relationship is getting a bird ’ s - eye
view of the types of tests that will be executed and the input data and expected results. You
should use this as much as possible during development (see the following bullet).

 Use common test data. Where possible, you should use a common set of test data during unit
testing and integration testing to avoid issues later in the lifecycle. It is often not possible to
replicate the exact quantity of the test data — for instance, technical test will generally use much
larger sets of test data to fully stress the system, but you should look to use a reduced set of the
same data. Identifying common configuration and transaction data greatly reduces test data
issues during functional and technical tests, and simplifies test scripts and tools.

 Separate data and databases. There are a number of different environments and processes that
you need to support and having effective data and database management in place will help. As
mentioned previously, using common test data assists with this greatly, but you will still need to
support different data and databases in different environments. Separating data and databases
enables you to deploy only the required databases, artifacts, and data required. You don ’ t want

❑

❑

❑

❑

❑

c02.indd 57c02.indd 57 1/20/09 10:42:58 AM1/20/09 10:42:58 AM

Excerpted with permission of Wrox Press from Design - Build - Run

58

Part I: Production-Ready Software

test tables, test views, or test tool databases deployed along with the primary database into the
production environment.

 Use common test scripts and scenarios. In the same way that you should try to use a common
set of test data, you should also try to minimize the number of different test scripts that are used.
This is especially true for integration testing when you are testing a set of components. Technical
tests will usually isolate a single integrated set of components and put them through their paces.
Where you can, you should align your tests to get early insights into the technical characteristics.
Obviously, the tests are conducted in different environments and, as such, the expected results
may need to be tweaked, but aligning yourself against what will come next can greatly reduce
the number of issues you encounter. It ’ s the same for functional tests; although functional tests
will ripple through functionality in a more end - to - end fashion, you can still align yourself nicely
to reduce the impact. Your unit tests and integration tests should be automated and exercise as
much of the system as possible via the binaries and not rely on manual effort.

 Use common test tools, stubs, and simulators. Where possible, the test tools that are going to be
used during functional and technical testing should be used during the development phase.
This irons out a number of issues with the tools early on and eases the testing processes. Using
off - the - shelf tools enables you to configure them appropriately for your testing needs. By
developing your own test tools, you can ensure that you capture the requirements of the test
teams to ensure that they are fit for purpose. In some situations, you might be using third - party
or other applications that are not available during development, and you ’ ll need to develop a
stub or simulator to exercise certain functionality. You should try and use a common stub or
simulator for all testing activities. Where possible, you should use the actual third - party
components to avoid downstream issues.

 Track releases and features. Requirements and designs change during the project lifecycle, and
often it ’ s not possible to incorporate a change immediately. You need to keep track of what
features are in each release (the Release Note) to ensure that test teams install the appropriate
release for the tests that they are performing. If a tester is following a test script for something
that ’ s not included within the release, this script isn ’ t going to pass and an issue will be raised
against the software. Release planning also tracks which defects have been fixed in which
release. Patches and hot - fixes should also be tracked, just like any other release.

 Define releases and their content. A release doesn ’ t just include DLLs. It can include
configuration files, database scripts, productivity scripts, data, test scripts (including expected
results), and documentation. Everything that is required for a particular purpose needs to be
included in a release that can be installed quickly and easily with all the right artifacts and
configuration. Copying files from one place to another is often tedious and time consuming. The
installation package should be complete and should not require access to network drives, source
control, or any other repository. This allows the consumer to install the software and artifacts in
a completely independent and isolated environment. Things move on and source control or
network drives have the latest view. If the test scripts have been updated because of a change or
enhancement, they may no longer work with a previous release and the latest release may not
be at the correct stage to be deployed. The packaging solution should have different
configurations for each purpose, such as developer testing, functional testing, and technical
testing, as well as supporting custom configuration to allow picking and choosing of what is to
be installed. Silent installation should also be supported to reduce manual intervention and
support productivity tools and scripts (see the upcoming bullet “ Develop productivity tools and
scripts “).

❑

❑

❑

❑

c02.indd 58c02.indd 58 1/20/09 10:42:59 AM1/20/09 10:42:59 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

59

 Separate test matter from production. Throughout development you may introduce different
release types, such as Debug, Test, Final, and so on. This ensures that only the relevant
components and artifacts are compiled and included in the resulting binaries. It avoids
including test statements in a final release and allows you to have specific features in test
releases, enabling you to better test some of the more complex functionality of the system.
However, you need to ensure that switching between release types doesn ’ t impact your ability
to find, fix, and test. You don ’ t want to be messing about too much installing different releases to
ensure that the code works correctly. Functional and technical testing will generally use final
releases to remove all ambiguity. However, there may be instances where functional testing can ’ t
use all the “ live ” components; therefore, stubs and simulators might need to be used. It ’ s worth
thinking about how the number of different code bases can be reduced, a topic I ’ ll discuss
further in Chapter 23 .

 Perform regular integration and automated builds. Performing regular builds ensures that
everything that is ready to build is included in a single build and doesn ’ t affect anything else. The
build process should be automated as much as possible as this will be used moving forward to
deliver into the release process. It is important that every developer knows what ready to build
means, what is required, and how to submit their artifacts into the process. This avoids
unnecessary issues, including missing files and compilation errors, when everything is brought
together. The regular build process should build all the various compiled release types as well as
 covered builds for each of them.

 Fully regression test build and releases — Once everything has been brought together into a
single build, it should be fully regression tested. At first this will consist of executing all the unit
tests. However, it could also include some rudimentary “ smoke ” tests. Moving forward, the
regression pack would include and execute the integration tests, and, ultimately, it will be
extended to cover a magnitude of tests, including functional tests and technical tests, collectively
referred to as “ smoke ” tests. The regression test tools need to be extensible to be able to support
different test scenarios. Unit tests and integration tests may need to run against a particular
release configuration and its covered counterpart, whereas the functional and technical tests will
need to run against a final release. The interesting thing here is that you can run all the
functional tests and technical tests against a covered build and see how much code is exercised,
as it often provides very useful results. Once the quality bar has dropped and the unit tests don ’ t
work or the integration tests don ’ t work, the only tests left are the functional and technical
regression tests, which can start to become the single measure of quality. The regression tests
have usually been built up into a really wide reaching set, covering a wide variety of
functionality and technical features, so they should be capable of validating more of the system
from a live - like fashion. The tests are generally automated, so in some cases they won ’ t cover the
more manually intensive tests. However, they are a good indication of “ functional ” quality if all
the tests pass. If the system passes these regression tests, it is generally good enough to be
deployed, or that ’ s the idea anyway. In many cases, this can be true — just because the unit tests
pass doesn ’ t mean that they are functionally or technically correct. Once the quality bar is
dropped, there is no way of telling whether it ’ s the code that doesn ’ t work or the tests that are
wrong. It ’ s usually the tests that are broken, as the code has been “ smoke ” tested in the
environment and proven to work. So, the broken unit or integration tests now need to match the
code along with everything else that needs to be addressed. Misaligned code and unit/
integration tests should be frowned upon. However, having a rich set of regression tests and an
extensible regression capability will allow the product to be tested in a variety of ways,
preferably in parallel to get a true measure of its “ overall ” quality.

❑

❑

❑

c02.indd 59c02.indd 59 1/20/09 10:42:59 AM1/20/09 10:42:59 AM

Excerpted with permission of Wrox Press from Design - Build - Run

60

Part I: Production-Ready Software

 Define a ready - to - build and ready - to - release process. Before anything is submitted to a build
or a release, it must pass all the required quality checks. First, the process will need to include
steps that ensure all the source code compiles and runs with the latest code base. Additional
steps in the process will involve ensuring that all the relevant tests have been executed (and
passed); all the required results are in place (including log files, instrumentation reports, and
event logs); all the necessary documentation has been generated and is correct; all the test
scripts, expected results, and actual results are in place and match; all the necessary profiling
reports are in place and meet the required quality level; all requirements and design comments
have been incorporated or addressed; and that all peer review comments have been
incorporated or addressed.

 Develop and use templates containing TODO statements. Copying and pasting is very
dangerous during development. Logging statements, instrumentation, and comments are not
updated properly, leading to poor quality documentation and code. Providing a set of base
templates with TODO notes helps to ensure that all your components follow an agreed
pattern — for instance, TODO — put your implementation here. TODO notes need to be
checked and then removed from the code prior to delivery to build to avoid any confusion later
down the line. The templates also need to adhere to the standards and guidelines.

 Develop productivity tools and scripts. Do it regularly manually and it should be automated.
Reducing the amount of manual effort by providing tools and scripts not only reduces the
number of issues but increases the speed at which the task can be done. For instance, turning an
environment around from development testing to functional testing can involve installing a
different release with different test data and scripts. Gathering log files, databases extracts, and
other artifacts supports many purposes and should be automated. For example, after running
the unit tests, you want to capture all the log files, events logs, and performance counters to
include in build completion. These tools and scripts can also be used during testing and live
running to assist in issue identification and resolution.

 Using code generation techniques — Generating code through the use of code generators often
speeds up development by effectively automating laborious tasks. Code generators are often
used to generate data access components because they can be driven from the database schema.
You need to ensure that not only the code generators themselves adhere to all the required
quality characteristics, but that the code they produce also adheres to them. In the cases of
Model Driven Engineering, code is generated from the design. The generated code needs to
meet all the required quality characteristics. Generated code needs to be reviewed, profiled, and
used in exactly the same way as if it were written by hand.

 Continuously improve. Finally, everything you do during the development phase must be
reviewed regularly and streamlined. You must maintain the quality bar and not get into
situations where you ’ re lagging behind due to ineffective processes. Wherever possible,
you need to improve the performance of your tools and processes so that they can be used
throughout the lifecycle effectively. Running things in parallel helps to keep the total
end - to - end time down, and reducing the number of dependencies between tasks, tests, and
steps means that given a suitable environment, you can run multiple tests and processes in
parallel.

 In the next chapter, “ Preparing for ‘ Production ’ ” , you ’ ll examine some more of the activities that should
be considered prior to launching into formal coding.

❑

❑

❑

❑

❑

c02.indd 60c02.indd 60 1/20/09 10:43:00 AM1/20/09 10:43:00 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

61

 Quality Comes at a Price
 This section looks at some of the financial implications of quality and, more important, the costs
associated with a lack of quality. Quality generally comes at a price, although an abundance of activities
can be performed that are low cost and very high gain, assuming that they are put in place early. I ’ m not
going to use a lot of statistics in this section because I think we are all generally aware of the cost
implications of getting things wrong up front, and there are more than ample books and references that
cover this subject. This section discusses some of the financial aspects that should be considered during
the decision - making process. Once you understand all the processes and the financial implications, you
can ensure that the Project Management Triangle is accurate. You ’ ll use the construction process and
some of the tips outlined earlier to assess the relevant costs and savings. The fact that you ’ re a developer
doesn ’ t mean that you shouldn ’ t be aware of the financial impact you can have on a project.

 While you might not be a financier, the decisions that you make and the actions that you take affect the
financial health of the project and the system as a whole. These decisions and actions need to be justified
and cost effective for now and in the future.

 Calculating the Potential Cost of Defects
 Given that it ’ s difficult to predict the future and the number of defects that you might encounter, a
simple cost - benefit analysis needs to take best - guess and real - world estimates into account. For example,
it would be extremely naive to assume that there would be no defects in the system following the
construction phase. It would also be naive to assume that the system will go into production completely
defect - free. However, there are usually many test phases or activities between construction and
production that will result in the production release having far fewer defects than the first release that
came out of construction. Therefore, it ’ s prudent to assume a certain level of defects following initial
construction. Many studies have been conducted into this subject, although I am not going to go into
these here. Suffice it to say that defects will be present in the solution. However, the number and
complexity of defects can ’ t be determined up front. The further the project gets through testing, the more
subtle the issues can become and the more thought they require on how to resolve them.

 Let ’ s look at a very simple defect model to try and calculate the cost of defects and use this information
to determine whether “ code quality 101 ” could be cost effective. To keep the math simple, assume that
the cost of each developer is $ 10 per hour, and that each developer works a standard 8 - hour day. If
adhering to “ code quality 101 ” were to cost $ 160 (that is, 2 days), it would need to save at least $ 160
further down the line to be cost effective. This figure does not include the initial set - up and
implementation costs. This is where the educated guesswork comes in and defect modeling is one way
of achieving a possible figure.

 The following table shows some high - level defect categories and hypothetical effort/costs associated
with them:

c02.indd 61c02.indd 61 1/20/09 10:43:00 AM1/20/09 10:43:00 AM

Excerpted with permission of Wrox Press from Design - Build - Run

62

Part I: Production-Ready Software

 Defect Category Fix Effort / Cost Brief Explanation

 Very Simple .5 hour / $ 5 Assume a very simple change to a class that doesn ’ t
require any test script updates, such as updating or
correcting the comments or tidying up the code. The
estimate includes the time it takes to check out the code,
make the change, execute all the quality checks and
processes, check in the change, and submit the change
into a release.

 Simple 2 hours / $ 20 Assume a simple change to a class that requires one test
script update and expected results change. Assume that
this change also needs to be factored into further testing.

 Medium 4 hours / $ 40 Assume a reasonable defect with multiple test changes
and conditions that need to be factored throughout.

 Complex 40 hours / $ 400 Assume a fairly sizable re - factoring exercise of a
reasonably sized component.

 Very Complex 160 hours / $ 1600 Assume a rewrite of a fairly complex component.

 No two applications are the same and as such each application will generally have it ’ s own specific effort
estimates. However, by using the categories in the preceding table, you can put together a sliding scale
or model of defect totals and associated costs that can show various positions throughout the project
lifetime.

 Figure 2 - 3 shows a hypothetical defect model based on the preceding inputs.

Figure 2-3

 The defect model shown is used to highlight the basic analysis. It does not take into account any other
resource downtime and it does not take into account individual component complexities or developer
skills. As such, it provides a very static average used for example purposes only.

c02.indd 62c02.indd 62 1/20/09 10:43:00 AM1/20/09 10:43:00 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

63

 The defect model in Figure 2 - 3 has two main rows, $ Cost per Defect and Percentage of Overall Defects ,
which can apply to a single class, component, or assembly, or it provides an average across all the
components and assemblies.

 $ Cost per Defect — Contains a cost for each high - level defect category, as outlined in the
preceding table. The table sets the scene for the defect model by examining the different
categories and associating a baseline cost with each one.

 Percentage of Overall Defects — Contains a figure that represents the percentage of defects
assumed in this category. For example, this model is estimating that 50 percent of the overall
defects will be in the category Very Simple. It estimates that 2 percent will be in the Very
Complex category.

 The two rows provide the basis of the remaining calculations in the model and as such should be based
on educated best guesses or real - world estimates from previous calibration exercises.

 The remaining rows in the model show a total number of defects in the first column, and then each
category column shows how may defects in the category it represents and the total cost for this category.
For example, the row estimating a total of 30 overall defects calculates the following statistics:

 15 very simple defects, at a total cost of $ 75

 9 simple defects, at a total cost of $ 180

 4.5 medium defects, at a total cost of $ 180

 0.9 complex defects, at a total cost of $ 360

 0.6 very complex defects, at a total cost of $ 960

 The statistics total up to $ 1,755, which could be spent fixing 30 defects according to the various
percentage splits. It ’ s clearly not possible to actually have 0.9 or 0.6 defects, so these will probably roll up
to whole units and increase the costs again. These figures are clearly only representative of the overall
percentage within the defect category.

 So, assuming the defect model is somewhat realistic and based on some real - world examples, it would
show that the “ code quality 101, ” which was estimated to cost $ 160, needs to potentially capture and fix
the equivalent of eight simple defects to make it cost - effective. I guess you need to ask yourself “ How
many simple defects would the result have if I didn ’ t adhere to any code quality at all? ” Remember that
defects are not just functional or execution issues. A review of the code could have highlighted thirty two
very simple defects that would need to be addressed. When it comes to maintaining the system and
adding new functionality, it could take someone a long while to “ get their head around the code, ” which
would also increase the costs. Although it was possible to arrive at this conclusion based solely on the
information in the preceding table, it is a useful exercise to produce a basic model because it can be used
to ratify the overall categories and percentages. It is also very useful at the end of each phase to examine
how close the estimates were to the actual figures and update them accordingly.

 Using a defect model such as this or any other model really helps to determine the foundation of
the cost - benefit analysis. Cost - benefit analysis is discussed in more detail shortly. It is important that the
model be based on real - world findings or estimates to ensure that the figures are as accurate as possible.

❑

❑

❑

❑

❑

❑

❑

c02.indd 63c02.indd 63 1/20/09 10:43:01 AM1/20/09 10:43:01 AM

Excerpted with permission of Wrox Press from Design - Build - Run

64

Part I: Production-Ready Software

It is actually astonishing when you plug in real - world figures and see just how much you can potentially
save by performing a few rudimentary activities up front. It is also astonishing to see just how much
some defects can really cost further down the line.

 This is just one simple example of calculating a cost - benefit figure that is related to potential defects and
fix effort. There are other situations where defect modeling could be inappropriate and another model is
required. For example, when choosing to use an existing component instead of custom component,
building a solution will involve determining the amount of effort required to design, build, and
implement the custom solution, as well as balancing these against the costs associated with product
selection, procurement, licensing, implementation, and usage of the existing component.

 Basic Financial Analysis
 To meet the ever - increasing challenge of production - ready development, it ’ s clear that some pretty
industrialized tools, processes, and practices need to be put in place, and there are costs associated with
doing this. Having a basic understanding of some of the financial implications helps to bolster the
decision - making process. Financial discussions should always be held up front to avoid budget increases
and to avoid unnecessary disputes later.

 Let ’ s look at two financial measures to bear in mind during development: the total cost of ownership
(TCO) and the cost of poor quality (COPQ).

 Total cost of ownership (TCO) is a financial statement that covers the costs associated with the
entire system, from its initial development and implementation to its final decommission. The
following list is a representative view of what is generally included within a TCO statement:

 Costs associated with initial development and implementation

 Costs associated with running the system (infrastructure, electricity, floor space, and so on)

 Costs associated with the system ’ s usage, support, and maintenance

 Costs associated with training (including project staff, users, and support staff)

 Costs associated with failures and outages (planned and unplanned)

 Costs associated with performance and response time issues (degradation)

 Costs associated with reputation loss and recovery

 Costs associated with decommission

 The cost of poor quality (COPQ) is the sum of the costs associated with producing defective
material, including but not limited to:

 Costs associated with finding and fixing the defect

 Costs associated with lost opportunities

 Costs associated with loss of resources due to fixing the defect

 There are many other financial controls and disciplines that should be carefully considered when setting
the quality bar for a project. However, the preceding financial elements cover what you need to
demonstrate best practice in the quality landscape.

❑

❏

❏

❏

❏

❏

❏

❏

❏

❑

❑

❑

❑

c02.indd 64c02.indd 64 1/20/09 10:43:01 AM1/20/09 10:43:01 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

65

 Any practice that is used during the project increases the costs associated with initial development and
implementation in the TCO statement. However, the additional costs should be met or bettered in savings
or potential savings in the other areas. For instance, the following is a very simple example:

 If the cost of integration testing (and fixing) an assembly or sub - assembly is $ 500, then it must
save at least $ 500 or have the potential to save at least $ 500 in other areas further down the line
to make it a worthwhile practice.

 Depending on the size of the functional and technical test teams, this cost could be easily realized by
reducing the amount of time and effort spent idle as a result of defects. This is especially true if the
assembly is architectural in nature and resides lower down in the stack, affecting a number of
components higher up.

 Cost - Benefit Analysis
 It is often prudent to perform a rudimentary cost - benefit analysis to determine whether a process or
practice should be implemented. The primary purpose of the cost - benefit analysis is to calculate the
difference between what the solution will cost to put in versus the amount of money it will save by
implementing it. Any practice increases costs associated with development and implementation, so you
want to concentrate on where these can reduce additional costs.

 The following table shows a very high - level mapping. To keep this section relatively brief, I have chosen
to map a handful of best practices that are close to my heart, but you can easily see the purpose of the
exercise. The table is only partly completed and as we progress throughout this book there are many
other practices that can be included that help to reduce costs. For instance, a fault - tolerant design would
be included with costs associated with failures and outages .

 Total Cost of Ownership Best Practice Brief Explanation

 Costs associated with the
system ’ s usage, support, and
maintenance

 Instrumentation and diagnostics

Standards and guidelines

Process and productivity guides
(including generated
documentation)

Productivity tools and scripts

Templates and TODO statements
Configuration

Build and regression testing

 In addition to all the project
documentation, the best
practices listed improve the
overall support and
maintenance staff ’ s
productivity and knowledge
of the system and how to
support, maintain, and
deploy it.

 Costs associated with training
(including project staff, users,
and support staff)

 Process and productivity guides
(including documentation
generation)

 The documentation
produced will help each
individual user group
understand the system and
the processes and tools
surrounding it.

❑

(continued)

c02.indd 65c02.indd 65 1/20/09 10:43:01 AM1/20/09 10:43:01 AM

Excerpted with permission of Wrox Press from Design - Build - Run

66

Part I: Production-Ready Software

 Total Cost of Ownership Best Practice Brief Explanation

 Costs associated with failures
and outages (planned and
unplanned)

 Common test foundation (data,
scripts, regression)

Unit and integration testing

Static Code Profiling and Peer
review

 Thorough testing at an early
stage with common data and
scenarios will help to reduce
the number of potential
defects. Static code profiling
and peer reviews will ensure
that the components are
thoroughly reviewed prior to
release.

 Costs associated with per-
formance and response time
issues (degradation)

 Performance profiling

Unit and integration testing
(performance cycles)

 The cursory code profiling
and performance cycles will
help to identify potential
performance bottlenecks and
issues early.

 This type of exercise should be conducted in full against any other financial measures that are in place.
As mentioned at the start of this chapter, the TCO and COPQ measures provide a good basis for this
sort of analysis. COPQ is not mapped in this section, although it would be quite simple to produce.

 The simple mapping provides two important purposes:

 It shows how the initiative can be used to reduce costs.

 It highlights any gaps that might need to be plugged by introducing a particular initiative or
practice to reduce costs further.

 Once the basic mapping has been done, additional cost - benefit analysis can be performed to further
bolster the information presented. The important thing to remember is that everything you do during
the project and especially the construction phase is to try and reduce costs (and defects) further
down the line.

 Best Practice Analysis
 This section simply bolsters the previous one by examining some of the best practices and the tools that
are associated with them. Providing a simple set of pros and cons is very useful when determining
where to set the quality bar for construction. It is important to note that best practices aren ’ t without
drawbacks. Bearing in mind these drawbacks and taking effective action and putting the appropriate
controls in place are vital to a successful construction process.

 The following C# code snippet would be very easy to write and manually test:

public void OutputMessage(string message)
{
 Console.WriteLine(“ OutputMessage: {0} ” , message);
}

❑

❑

(continued)

c02.indd 66c02.indd 66 1/20/09 10:43:02 AM1/20/09 10:43:02 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

67

 If some basic exception handling and logging is added, the code might look like something like this:

public void OutputMessage(string message)
{
 try
 {
 Console.WriteLine(“OutputMessage: {0}”, message);
 }
 catch(Exception e)
 {
 Console.WriteLine(“OutputMessageException: {0}”, e);
 }
}

 In this very simple example, the code is now harder to fully test because the exception handling and
logging section also needs to be tested. In this example, handling the exception is nothing more than
catching it, and logging is simply outputting the error message to the console (without any contextual
information, e.g. the message being passed in).

 A very simple solution to testing the exception handling is to introduce a special test message argument
and a compiler directive such as TEST. A compiler directive is essentially a command used by the
source code compiler. In this case, the command is a conditional directive to determine whether the
condition evaluates to true. If it does, the code will be compiled and included in the compiled version. If
the condition evaluates to false, the code will not be compiled and included.

public void OutputMessage(string message)
{
 try
 {
 #if TEST

 if(message == “EXCEPTION_TEST”)
 {
 throw new Exception(message);
 }

 #endif

 Console.WriteLine(“OutputMessage: {0}”, message);

 }
 catch(Exception e)
 {

 Console.WriteLine(“OutputMessageException: {0}”, e);
 }
}

 Using these conditional directives would allow two different versions of the code to be compiled — one
for normal testing and one for exception testing. Furthermore, including the special test value allows a
single version for testing, which can be built upon. There are many different ways of dealing with this
type of problem, including the use of interfaces to swap in special test components. When a development
team ramps up, a common approach needs to be in place to avoid multiple ways of doing the same

c02.indd 67c02.indd 67 1/20/09 10:43:02 AM1/20/09 10:43:02 AM

Excerpted with permission of Wrox Press from Design - Build - Run

68

Part I: Production-Ready Software

thing. Designing for testing is covered later in this book, so I ’ m not going to go into the details and
alternatives right now.

 In this simple example, there is nothing really special happening in the exception handling section, so a
simple test is probably good enough to test it. However, this is a prime example of the 80/20 rule: 80
percent of the time is spent proving 20 percent of the functionality. The 80/20 rule also applies to other
development practices, such as coding standards and commenting. Once these are applied, the sample
source code might look something like this:

<summary>
 The OutputMessage method is used to display a message on the console
</summary>
<arguments>
 <argument name=”message”>Message to be displayed. In test mode, when the
 input message contains ‘EXCEPTION_TEST’ an internal exception will be
 raised.</argument>
</arguments>
public void OutputMessage(string message)
{
 try
 {
 #region TEST_CODE

 #if TEST

 // check for test mode message
 if(message == “EXCEPTION_TEST”)
 {

 // throw a new exception based on the incoming message
 throw new Exception(message);
 }

 #end if

 #endregion

 // Functional Requirement 101 – Output Message to Console
 Console.WriteLine(“OutputMessage: {0}”, message);

 }
 catch(Exception e)
 {

 // Technical Requirement 101 – Output Exception to Console
 Console.WriteLine(“OutputMessageException: {0}”, e);

 }
}

 Although this is an extremely basic example, it highlights some of the important factors that need to be
taken into account when defining the construction process and setting the quality bar. Of course, the
preceding code snippet probably wouldn ’ t ever be used in a real - world scenario.

c02.indd 68c02.indd 68 1/20/09 10:43:02 AM1/20/09 10:43:02 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

69

 The following table lists some pros and cons with a few of the practices I ’ ve discussed and includes some
basic high - level actions associated with them. As has been mentioned, in general terms, any additional
practice that is introduced will increase development effort to some degree. However, I ’ ve chosen not to
include increases development effort in the cons because the drawbacks of not including the best practices
far outweigh including them.

 Best Practice Pros Cons Actions

 Coding standards
(including naming
conventions and
coding
conventions)

 Makes the code
easier to read and
follow.

Provides a
consistent basis
for all coding and
scripting .

 All developers need
to understand and
follow the guidelines.

Code needs to be
checked for
adherence and non -
 compliance.

Needs to be updated
and maintained as
new practices are
introduced .

 Must have:

A coding standards and
guidelines document and
induction guide.

Tools and guidelines for checking
adherence and non - conformance.

A process whereby new practices
can be introduced and
re - factoring can be taken into
account .

 Commenting Makes the code
easier to
understand,
follow, and
maintain .

 Needs to be updated
when the code
changes.

Needs to be reviewed
for correctness and
meaningfulness.

 Must have:

Clear guidelines that when code
is updated, comments are
updated accordingly.

Review checklist that includes
commenting checks .

 Exception
handling,
including
defensive coding

 Protects the
system against
unknown or
invalid
circumstances
and situations .

 Needs to be tested
and asserted.

Needs to be reviewed
for compliance to
standards .

 Must have:

Guidelines and templates for
exception handling coding.

A development and test
framework for testing exceptions.

Review checklist that includes
exception - handling checks .

 Event logging and
tracing

 Helps with issue
investigation and
resolution.

Helps with
monitoring and
alerting .

 Can affect
performance if not
implemented
efficiently.

Needs to be tested
and asserted.

Needs to be reviewed
for correctness and
completeness .

 Must have:

Guidelines and templates for
logging and tracing usage.

A development and test
framework for testing logging
and tracing.

Review checklist that includes
logging and tracing checks .

(continued)

c02.indd 69c02.indd 69 1/20/09 10:43:02 AM1/20/09 10:43:02 AM

Excerpted with permission of Wrox Press from Design - Build - Run

70

Part I: Production-Ready Software

 Best Practice Pros Cons Actions

 Instrumentation Helps with
support
monitoring and
alerting .

 Can affect performance
if not implemented
efficiently.

Needs to be tested and
asserted.

Needs to be reviewed
for correctn ess and
completeness .

 Must have:

Guidelines and templates for
instrumentation implementation.

A development and test
framework for testing
instrumentation.

Review checklist that includes
instrumentation checks .

 You need to fully understand the implications in terms of cost (and timescales) of the practices being
proposed or introduced. It ’ s all too easy to jump on to the latest thinking or a cool tool that ’ s been
announced. Doing the homework and some background analysis will clarify specific benefits and what
else needs to be implemented to support the practice ’ s usage. The following table lists some of the pros
and cons of the tools associated with these practices. I ’ ll leave it to you to determine which actions you
would put in place to counter the cons, although some of the manual processes were touched on earlier.

 Tool Pros Cons

 Static code
analysis

 Automates the process of
checking code against the
coding standards.

Allows developers to check
work and correct issues prior
to formal review, saving
valuable review time.

Reviewers can re - execute the
tool to ensure conformance
and validate exceptions.

 Specific coding standards need to be configured
unless the out - of - the - box configuration is
adequate (in most cases, it isn ’ t).

Needs to be updated and maintained as new
practices are introduced.

Static code analysis does not remove the need for
formal reviews.

 Code profiling Helps to identify potential
performance and technical
issues prior to formal review
or build (including database
element profiling). This
reduces the amount of review
time and potential defects.

 Specific profiling needs to be configured unless
the out - of - the - box configuration is adequate (in
most cases, it only goes so far).

Code and database profiling does not remove the
need for formal reviews.

 Test coverage
analysis

 Code coverage identifies
areas of code that have not
been tested. This analysis
can be used to develop
further tests or remove areas
of redundant code.

 Striving to meet 100 percent coverage can increase
development and test times if the appropriate
practices are not already in place. An appropriate
benchmark needs to be established. The 80/20
rule applies here in that 80 percent of the time can
be spent trying to cover 20 percent of the code.

Some tests may need to be run against different
configuration settings to achieve a true
representation of code coverage.

(continued)

c02.indd 70c02.indd 70 1/20/09 10:43:03 AM1/20/09 10:43:03 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

71

 Tool Pros Cons

 Documentation
generation

 Generating the
documentation from the code
saves you from having to
write it manually and avoids
rework, and keeps the code
and documentation in - line.

 The generated documentation often needs to be
updated with class diagrams and interaction
diagrams generated from other tools, which need
to be carefully understood and configured. This
can require manual effort in documentation
production.

 Automated
tests

 Manual testing is often a
laborious task and mistakes
can be made. Once a series of
tests has been automated, it
reduces manual effort and
provides a solid foundation
for regression testing.

 The tests and expected results need to be
maintained throughout to ensure changes and
updates are reflected correctly. This is especially
true of user interface testing. As soon as fields
move or additional fields are added, you can
sometimes see a dramatic effect on the user
interface test scripts.

The tools often require complex configuration,
which needs to be managed and maintained.

 Some of these tools can be purchased and some can be developed in - house. In either case, they need to
be configured appropriately and managed as a part of the overall solution and justified accordingly. That
said, I ’ m a firm believer in using these types of tools for any and all development projects.

 Estimates and Estimating
 One final quality input to the planning process is the estimates. Build and unit test estimates should
cover the resources and time required to build a component and unit test it. The estimates are highly
dependent on the level of quality, the effectiveness and efficiency of the development and test processes,
procedures and tools, and the skill level of the developer. Estimating is a true discipline and getting
ready for development as early as possible helps to ensure better estimates.

 Estimating is essentially answering the question “ How long will it take? ” and its counterpart question
 “ How much will it cost? ” For the purpose of this exercise, I am going to use a very simple case to
demonstrate the value of realistic estimating. The challenge question is as follows:

 How long will it take to produce a simple console application in C# that takes a single string
argument and displays the message on the screen?

 You may be thinking of a figure right now, based on the preceding example code snippets. The answer to
this question is that it really depends. However, for the purposes of this exercise, I ’ m going to put a stake
in the ground and say 15 minutes for a very simple solution with manual testing and minimum best
practice. 15 minutes is a realistic estimate to perform the following tasks:

 1. Open Visual Studio.

 2. Create a new console application.

 3. Add a Console.WriteLine statement that outputs the argument.

 4. Compile the solution and generate an EXE file.

❑

c02.indd 71c02.indd 71 1/20/09 10:43:03 AM1/20/09 10:43:03 AM

Excerpted with permission of Wrox Press from Design - Build - Run

72

Part I: Production-Ready Software

 5. Open a command window.

 6. Change the directory to the location of the generated EXE.

 7. Run the EXE, passing an argument on the command line.

 8. Check that the correct argument is displayed in the output.

 There ’ s nothing special about this and it ’ s a viable solution to the problem and one that would probably
be used in a C# training course. You saw an example of this earlier, albeit not as a form console
application. In this instance, the estimate takes into account only a basic implementation and covers
coding and very minimal testing. This example is used only to bolster the importance of understanding
all the processes and practices I ’ ve covered so far and including them in the estimating process.

 Once the quality bar is in place and you ’ ve done the up - front work, you can put some realistic estimates
in place by walking through the process. The process and tools dictate the minimum development time and
the component ’ s complexity, and developer skill dictates the maximum development time . The more
efficient the processes and tools are, the lower the minimum, and the less complex the components are
and the better and faster developers are, the lower the maximum. The mean development time is middle
ground between the most experienced developer and the least experienced developer. For instance, if it
takes a highly skilled developer one day to complete a task and it takes two days for a less skilled
developer, the mean development time would be approximately 1.5 days, the difference between the two.
Over time, the actual development times can be recorded to improve estimating, although the estimates
still need to factor into the minimum development time for the process, as it may have changed.

 Figure 2 - 4 shows a mapping between developer skill and component complexity.

Figure 2-4

Ad
va

nc
ed

In
te

rm
ed

ia
te

B
eg

in
ne

r

D
ev

el
op

er
 S

ki
ll

Very Simple Simple Medium

Component Complexity

Complex Very Complex

 Minimizing the number of complex or very complex components allows for less highly skilled
developers to work on them. The ideal solution is to keep all components within the range of Very
Simple to Medium, allowing the maximum number of developers to work on them, although this needs

c02.indd 72c02.indd 72 1/20/09 10:43:03 AM1/20/09 10:43:03 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

73

to be balanced with development progression. Advanced developers want to work on complex
programs, junior developers want to advance to intermediate programs, and so on.

 If there are complex or very complex components in the solution, advanced developers are required on
the team. The project plan will determine how many developers are required and the appropriate level
of skill. It is generally easier to get beginner and intermediate developers than it is to get advanced
developers. Keeping the solution simple means more people can work on it, and having the right
processes and practices in place helps to keep everything on track and consistent.

 In my experience, nothing takes less than the minimum development time individually. Volumes of scale
need to be applied to achieve this. For instance, a rules engine may involve hundreds of rules
components. If there are 100 simple rules, components that are around one or two lines of core code each
and the appropriate templates are used. The time per component may dip below the minimum because
of the volumes and parallelism involved. This, however, should not necessarily be relied on when
estimating, as it can often cause a development bottleneck that needs to be reviewed carefully.

 To arrive at a true estimate, you need to fill in the gaps in the process. For example, if you look at steps of
developing test scripts and testing data from the development process, the process might look something
like this (I ’ ve simplified the steps for this example):

 1. Copy the unit test template to the appropriate component folder under unit test conditions.

 2. Fill in the component name, developer, team, and reviewer fields.

 3. Fill in the test conditions according to the test condition checklist.

 4. Save the unit test conditions.

 5. Conduct a formal review according to test condition checklist.

 Steps 3 and 5 are the hardest to estimate. Step 3 is difficult because you need to know how many conditions
there are, and Step 5 is based on the number of conditions. In general, conditions that can be met by input
values and output values are far easier to test than internal conditions. Complexity is typically based on the
number of conditions, which also include the input values and the different combinations, the number of
branches in the component, the nesting of the branches, and the outputs or expected results.

 The following pseudo code contains one input, AccountType, which has two possible values,
Administrator and User. The code has two branches, one for valid account types and one invalid
account types.

FUNCTION VALIDATE_ACCOUNT_TYPE(AccountType)

 VALID_ACCOUNT_TYPE = FALSE

 IF AccountType = “ Administrator ” OR AccountType = “ User ” THEN

 SET VALID_ACCOUNT_TYPE = TRUE

 ELSE

 RAISE BUSINESS EVENT: INVALID_ACCOUNT_TYPE + AccountType

c02.indd 73c02.indd 73 1/20/09 10:43:05 AM1/20/09 10:43:05 AM

Excerpted with permission of Wrox Press from Design - Build - Run

74

Part I: Production-Ready Software

 SET VALID_ACCOUNT_TYPE = FALSE

 END IF

 RETURN VALID_ACCOUNT_TYPE

END FUNCTION

 The pseudo code doesn ’ t contain any error handling or other outputs, so it acts as a very simple case.
The functional test conditions would include those listed in the following table:

 Condition Description Input Value Expected Results

 1 Valid administrator account type Administrator Return value = TRUE .

 2 Valid user account type User Return value = TRUE .

 3 Invalid account type XXX Return value = FALSE.

INVALID_ACCOUNT_
TYPE event raised with
XXX

 The basic test conditions in the preceding table would obtain 100 percent code coverage. They also take
into account the event being raised and the contextual information. The INVALID_ACCOUNT_TYPE event
could be verified manually; however, it ’ s still an expected result of the condition and not just that the
method returns false.

 When estimating how long it will take to build and test a component, you should take into account the
number of conditions, input values, and expected results, as described in the following table. Functional
designs sometimes don ’ t take into account exception handling and logging (unless there are very specific
requirements), as these are thought of as technical characteristics that should be documented in the
technical or detailed design documents.

 Condition Category Description Input Value Expected Results

 1 Functional Valid
administrator
account type

 Administrator Return value = TRUE .

 2 Functional Valid user
account type

 User Return value = TRUE .

 3 Functional Invalid account
type

 XXX Return value = FALSE.

INVALID_ACCOUNT_
TYPE event raised with
XXX .

c02.indd 74c02.indd 74 1/20/09 10:43:05 AM1/20/09 10:43:05 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

75

 Condition Category Description Input Value Expected Results

 4 Performance 10,000 * valid
administrator
account type

 Administrator Return value = TRUE.

< 5ms response time

 5 Performance 10,000 * valid
user account
type

 User Return value = TRUE.

< 5ms response time

 6 Performance 10,000 * mixed
valid
administrator
and user
account types

 2,000 *
administrator

8,000 * user

 Return value = TRUE.

< 5ms response time

 7 Monitoring /
 Incident
Investigation

 Invalid account
type YYY

 YYY Return value = FALSE.

INVALID_ACCOUNT_
TYPE event raised with
YYY .

 8 Monitoring /
Incident
Investigation

 Invalid account
type ZZZ

 ZZZ Return value = FALSE.

INVALID_ACCOUNT_
TYPE event raised with
ZZZ .

 9 Monitoring /
Incident
Investigation

Performance

 10,000 * mixed
invalid YYY
and ZZZ
account types

 2,000 * YYY

8,000 * ZZZ

 Return value = FALSE.

 2,000 * INVALID_
ACCOUNT_TYPE event
raised with YYY .

8,000 * INVALID_
ACCOUNT_TYPE event
raised with ZZZ.

 < 5ms response time .

 This may seem like an over - the - top set of test conditions for such a small component. However, they
could be extended even further to take into account logging and other technical features.

 The key message is to ensure that the level of testing is included in the scope and that the testing stresses
the component appropriately, whether at the unit level or integration level, prior to it leaving
construction. It should be firmly understood that not all issues will be resolved during construction, but
the level of build quality and testing should underpin the quality bar for progressing further. The level of
testing and the criteria should be taken into account when estimating.

c02.indd 75c02.indd 75 1/20/09 10:43:05 AM1/20/09 10:43:05 AM

Excerpted with permission of Wrox Press from Design - Build - Run

76

Part I: Production-Ready Software

 Summary
 This chapter covered the quality characteristics you need to bear in mind with everything that you do
and implement. You ’ ve also seen what is involved in construction quality and the processes and
practices you can employ to ensure your outputs are of a high quality. You ’ ve seen how you can better
prepare yourself for testing and issue resolution. You might not be able to totally eradicate these
situations, but you should do whatever you can up front to minimize them and keep costs and
timescales under control. Quality needs to be factored into the scope so that the budgets and timescales
can be realistically set and agreed on.

 The following are the key points to take away from this chapter:

 The quality characteristics apply to everything you do. Quality is not just about code quality; it
applies to all the artifacts that you produce and deliver. You should think about how each of the
individual characteristics could apply to the particular item or artifact you are producing.

 Construction quality echoes throughout the project. You need to ensure that your construction
processes and practices are tuned to produce high - quality outputs and deliverables. Some key
activities and practices include:

 Validating requirements and designs and documenting queries and questions that need to
be addressed before the component can be closed off completely

 Producing and reviewing low - level models and designs

 Developing and reviewing unit test scripts and test data to ensure breadth and depth of
test coverage

 Developing and reviewing components (application, architecture and framework, batch,
reporting, and so on)

 Developing and reviewing test harnesses, including mock objects, test stubs, and
simulators

 Executing thorough unit tests and ensuring that all the relevant outputs are captured and
verified

 Identifying assemblies (collections of related components) and ensuring the appropriate
level of granularity

 Executing thorough integration tests and ensuring that all the relevant outputs are
captured and verified

 Compiling completion reports that document the evidence and outcomes of the activities
carried out

 Submitting artifacts into a release and ensuring that all the relevant artifacts are included
in a release

 Performing peer reviews and quality checks throughout the process

 Include quality characteristics in the overall scope. It is important to agree on the quality
characteristics up front and include them in the overall scope. It ’ s particularly important to
ensure that all quality characteristics are captured and the processes reflect them. In addition,

❑

❑

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❏

❑

c02.indd 76c02.indd 76 1/20/09 10:43:06 AM1/20/09 10:43:06 AM

Excerpted with permission of Wrox Press from Design - Build - Run

Chapter 2: The Quality Landscape

77

where tools are used, the configuration should be agreed on to avoid any disputes. The best
practices include:

 Ensuring code quality by defining standards, guidelines, and templates

 Promoting re - use and layering to support testing and improve component re - use
throughout the solution

 Using code generation techniques and ensuring that the resulting code meets all the
coding standards and is profiled and reviewed as if it were crafted by hand

 Using automated static and dynamic code profiling to ensure code quality and to identify
potential issues early

 Including instrumentation and diagnostics in all your components

 Using automated code coverage tools to identify the amount of code covered during
testing

 Automatically generating documentation from code comments

 Avoid an influx of issues during testing. It is important to ensure that your test tools, test
environments, and processes are fit for purpose and ready when you need them. You need to try
to avoid an influx of:

 Environment issues

 Tool and script issues

 Test data issues

 Real bugs

 Turning around defects quickly can affect quality. You need to incorporate processes and
practices that allow sustained quality and support rapid turnaround when testing is blocked.
The processes that can potentially reduce quality include:

 Hot - fixing or patching

 Technical tuning and re - factoring

 Improve and maintain quality throughout. You can improve the overall quality of the system
in a number of ways. The following lists the key activities discussed in addition to those already
mentioned:

 Work with the test teams.

 Re - use common test data, scripts, and scenarios.

 Re - use common test tools, stubs, and simulators.

 Reduce the number of release configurations to avoid delays and installing and
re - installing different releases for different testing activities.

 Automate as much as possible. Do it twice manually, and it should be automated.

 Review processes and practices and continuously improve them where possible.

 Quality comes at a price. Nothing is for free. You need to understand the implications in terms
of cost (and timescales) of the choices that you make. The estimates need to be based on realistic

❏

❏

❏

❏

❏

❏

❏

❑

❏

❏

❏

❏

❑

❏

❏

❑

❏

❏

❏

❏

❏

❏

❑

c02.indd 77c02.indd 77 1/20/09 10:43:06 AM1/20/09 10:43:06 AM

Excerpted with permission of Wrox Press from Design - Build - Run

78

Part I: Production-Ready Software

figures and the processes will actually determine the average amount of time required.
However, proven and well - implemented processes and practices can help to reduce the costs.
The costs need to be understood, agreed to, and included in the overall scope to ensure that the
Project Management Triangle is set.

 Identify and correct as many defects as early as possible. The testing and verification that you
perform during the construction phase should try to catch as many defects as possible. This will
avoid costly and time - consuming “ wash - up ” sessions, whereby defects are scrutinized to
determine whether they could have been detected during construction or earlier.

 The following chapter examines some of the processes that should be considered and put in place early
to ensure that you are fully prepared for production, e.g. the development and implementation of
quality software products.

❑

c02.indd 78c02.indd 78 1/20/09 10:43:06 AM1/20/09 10:43:06 AM

Excerpted with permission of Wrox Press from Design - Build - Run

